Ir al contenido

Documat


Twisted bi-symplectic structure on Koszul twisted Calabi-Yau algebras

  • Xiaojun Chen [1] ; Alimjon Eshmatov [2] ; Farkhod Eshmatov [4] ; Leilei Liu [3]
    1. [1] Sichuan University

      Sichuan University

      China

    2. [2] University of Toledo

      University of Toledo

      City of Toledo, Estados Unidos

    3. [3] Sun Yat-sen University

      Sun Yat-sen University

      China

    4. [4] AKFA University, Uzbekistan
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 28, Nº. 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • For a Koszul Artin-Schelter regular algebra (also called twisted Calabi-Yau algebra), we show that it has a “twisted" bi-symplectic structure, which may be viewed as a noncommutative and twisted analog of the shifted symplectic structure introduced by Pantev, Toën, Vaquié and Vezzosi. This structure gives a quasi-isomorphism between the tangent complex and the twisted cotangent complex of the algebra, and may be viewed as a DG enhancement of Van den Bergh’s noncommutative Poincaré duality;

      it also induces a twisted symplectic structure on its derived representation schemes.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno