Ir al contenido

Documat


Neural Visualization of Android Malware Families

  • Alejandro González [1] ; Álvaro Herrero [1] ; Emilio Corchado [2]
    1. [1] Universidad de Burgos

      Universidad de Burgos

      Burgos, España

    2. [2] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

  • Localización: International Joint Conference SOCO’16-CISIS’16-ICEUTE’16: San Sebastián, Spain, October 19th-21st, 2016 Proceedings / coord. por Manuel Graña Romay Árbol académico, José Manuel López Guede Árbol académico, Oier Etxaniz, Álvaro Herrero Cosío Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2017, ISBN 978-3-319-47364-2, págs. 574-583
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Due to the ever increasing amount and severity of attacks aimed at compromising smartphones in general, and Android devices in particular, much effort have been devoted in recent years to deal with such incidents. However, scant attention has been devoted to study the interplay between visualization techniques and Android malware detection. As an initial proposal, neural projection architectures are applied in present work to analyze malware apps data and characterize malware families. By the advanced and intuitive visualization, the proposed solution provides with an overview of the structure of the families dataset and ease the analysis of their internal organization. Dimensionality reduction based on unsupervised neural networks is performed on family information from the Android Malware Genome (Malgenome) dataset.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno