Ir al contenido

Documat


Reinforcement Learning for Hand Grasp with Surface Multi-field Neuroprostheses

  • Eukene Imatz-Ojanguren [1] [2] ; Eloy Irigoyen [1] ; Thierry Keller [2]
    1. [1] Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Leioa, España

    2. [2] TECNALIA Research and Innovation. Neurorehabilitation Area (Donostia-San Sebastián)
  • Localización: International Joint Conference SOCO’16-CISIS’16-ICEUTE’16: San Sebastián, Spain, October 19th-21st, 2016 Proceedings / coord. por Manuel Graña Romay Árbol académico, José Manuel López Guede Árbol académico, Oier Etxaniz, Álvaro Herrero Cosío Árbol académico, Héctor Quintián Pardo Árbol académico, Emilio Santiago Corchado Rodríguez Árbol académico, 2017, ISBN 978-3-319-47364-2, págs. 313-322
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Hand grasp is a complex system that plays an important role in the activities of daily living. Upper-limb neuroprostheses aim at restoring lost reaching and grasping functions on people suffering from neural disorders. However, the dimensionality and complexity of the upper-limb makes the neuroprostheses modeling and control challenging. In this work we present preliminary results for checking the feasibility of using a reinforcement learning (RL) approach for achieving grasp functions with a surface multi-field neuroprosthesis for grasping. Grasps from 20 healthy subjects were recorded to build a reference for the RL system and then two different award strategies were tested on simulations based on neuro-fuzzy models of hemiplegic patients. These first results suggest that RL might be a possible solution for obtaining grasp function by means of multi-field neuroprostheses in the near future.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno