Ir al contenido

Documat


A study on the local convergence and complex dynamics of Kou’s family of iterative methods

  • Ioannis K. Argyros [1] ; Debasis Sharma [2] ; Sanjaya Kumar Parhi [3] ; Shanta Kumari Sunanda [2]
    1. [1] Cameron University

      Cameron University

      Estados Unidos

    2. [2] International Institute of Information Technology

      International Institute of Information Technology

      India

    3. [3] Fakir Mohan University

      Fakir Mohan University

      India

  • Localización: SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, ISSN-e 2254-3902, ISSN 2254-3902, Vol. 79, Nº. 2, 2022, págs. 365-381
  • Idioma: inglés
  • DOI: 10.1007/s40324-021-00257-y
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Obtaining convergence domain is an important task in the study of iterative schemes. Analysis of local convergence of an iterative procedure provides essential information about its convergence domain around a solution. In this manuscript, we study the local analysis of the uni-parametric Kou’s class of iterative algorithms for addressing nonlinear equations. This approach expands the utility of the methods by preventing the use of Taylor expansion in convergence analysis. In the view of extending the applicability of these methods, the convergence analysis is shown using Lipschitz condition on the first derivative. Our study provides radii of convergence balls and the uniqueness of the solution along with the calculable error distances. The complex dynamical analysis of the family is also presented. Numerical examples are solved to show that our theoretical conclusions work well in the situation where the earlier analysis cannot be implemented.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno