Ir al contenido

Documat


Recent results for the Landau–Lifshitz equation

  • André de Laire [1]
    1. [1] Université de Lille
  • Localización: SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, ISSN-e 2254-3902, ISSN 2254-3902, Vol. 79, Nº. 2, 2022, págs. 253-295
  • Idioma: inglés
  • DOI: 10.1007/s40324-021-00254-1
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give a survey on some recent results concerning the Landau–Lifshitz equation, a fundamental nonlinear PDE with a strong geometric content, describing the dynamics of the magnetization in ferromagnetic materials. We revisit the Cauchy problem for the anisotropic LL equation, without dissipation, for smooth solutions, and also in the energy space in dimension one. We also examine two approximations of the LL equation given by of the Sine–Gordon equation and cubic Schrödinger equations, arising in certain singular limits of strong easy-plane and easy-axis anisotropy, respectively. Concerning localized solutions, we review the orbital and asymptotic stability problems for a sum of solitons in dimension one, exploiting the variational nature of the solitons in the hydrodynamical frameworkFinally, we survey results concerning the existence, uniqueness and stability of self-similar solutions (expanders and shrinkers) for the isotropic LL equation with Gilbert term. Since expanders are associated with a singular initial condition with a jump discontinuity, we also review their well-posedness in spaces linked to the BMO space


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno