Ir al contenido

Documat


Oscillation of Noncanonical Second-Order Functional Differential Equations via Canonical Transformation

  • K. Saranya [1] ; V. Piramanantham [1] ; E. Thandapani [2] ; J. Alzabut [3]
    1. [1] Bharathidasan University

      Bharathidasan University

      India

    2. [2] University of Madras

      University of Madras

      India

    3. [3] Prince Sultan University & OST˙IM Technical University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The oscillatory properties of solutions to the second order functional differential equation Lx(t) + f (t)xβ(σ (t)) = 0, t ≥ t0 > 0 where Lx(t) = (η(t)x (t)) is a noncanonical operator, are studied. The main idea is to transform the noncanonical equation into canonical form which simplifies the investigation of oscillation of the equation. The obtained criteria are new and complement to the existing results reported in the literature. Examples illustrating the main results are presented.

  • Referencias bibliográficas
    • 1. Agarwal, R.P., Bohner, M., Li, W.T.: Nonoscillation and oscillation: theory for functional differential equations. Marcel Dekker, New York...
    • 2. Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation theory for second-order half-linear, superlinear and sublinear dynamic equations....
    • 3. Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation theory for second-order dynamic equations. Taylor & Francis, London (2003)
    • 4. Baculikova, B.: Oscillatory behavior of the second order noncanonical differential equations. Electron. J. Qual. Theory Diff. Equ. 89,...
    • 5. Baculikova, B.: Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 91,...
    • 6. Baculikova, B., Dzurina, J.: Oscillatory criteria via linearization of half-linear second order delay differential equations. Opuscula...
    • 7. Cesarano, C., Bazighifan, O.: Qualitative behavior of solutions of second order differential equations. Symmetry 11, 777 (2019)
    • 8. Chatzarakis, G.E., Jadlovska, I.: Improved oscillation results for second-order half-linear delay differential equations, Hacet. J. Math....
    • 9. Chatzarakis, G.E., Dzurina, J., Jadlovska, I.: New oscillation criteria for second-order half-linear advanced differential equations. Appl....
    • 10. Chatzarakis, G.E., Jadlovska, I., Grace, S.R.: A sharp oscillation criterion for second-order half-linear advanced differential equations....
    • 11. Chatzarakis, G.E., Jadlovska, I., Grace, S.R.: On the sharp oscillation criterion for half-linear several delay second-order differential...
    • 12. Dosly, O., Rehak, P.: Half-linear differential equations. North-Holland, Amsterdam (2005)
    • 13. Drabek, P., Kufner, A., Kuliev, K.: Oscillation and nonoscillation results for solutions of half-linear equations with deviating arguments....
    • 14. Dzurina, J., Jadlovska, I.: A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron....
    • 15. Dzurina, J., Jadlovska, I.: A note on oscillation of second-order delay differential equations. Appl. Math. Lett 69, 126–132 (2017)
    • 16. Dzurina, J., Jadlovska, I., Stavroulakis, I.P.: Oscillatory results for second-order noncanonical delay differential equations. Opuscula...
    • 17. Erbe, L.H., Kong, Q., Zhang, B.G.: Oscillation theory for functional differential equations. MarcelDekker, New York (1994)
    • 18. Erbe, L.H., Peterson, A., Saker, S.H.: Oscillation criteria for second-order nonlinear delay dynamic equations. J. Math. Anal. Appl. 333,...
    • 19. Jadlovska, I., Chatzarakis, G.E., Dzurina, J., Grace, S.R.: On sharp oscillation criteria for general third-order delay differential equations....
    • 20. Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3, 509–533...
    • 21. Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation theory of differential equations with deviating arguments. Marcel Dekker, New...
    • 22. Tang, X.H.: Oscillation for first-order superlinear delay differential equations. J. London Math. Soc. 65, 115–122 (2002)
    • 23. Trench, W.F.: Canoncial forms and principal systems for general disconjugate equations. Trans. Am. Math. Soc. 184, 319–327 (1974)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno