Ir al contenido

Documat


Global Dynamics of Degenerate Linear Differential Systems with Symmetry and Two Parallel Switching Lines

  • Xinyu Guan [1] ; Xingwu Chen [1]
    1. [1] Sichuan University

      Sichuan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we investigate the global dynamics for a degenerate linear differential system with symmetry and two paralleled switching lines. After analyzing the qualitative properties of all equilibria including infinity and the number of closed orbits, we obtain all global phase portraits on the Poincaré disc. From these main results, we find necessary and sufficient conditions for the existence of crossing limit cycles, crossing heteroclinic loops and sliding heteroclinic loops, respectively, and prove that the numbers of these three types of closed orbits are all at most 1. Moreover, switching lines maybe pseudo singular lines or boundary singular lines.

  • Referencias bibliográficas
    • 1. Artés, J.C., Llibre, J., Medrado, J.C., Teixeira, M.A.: Piecewise linear differential systems with two real saddles. Math. Comput. Simul....
    • 2. Braga, D., Mello, L.F.: Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane. Nonlinear...
    • 3. Chen, H.: Global analysis on the discontinuous limit case of a smooth oscillator. Int. J. Bifur. Chaos 26, 1650061 (2016)
    • 4. Chen, H., Duan, S., Tang, Y., Xie, J.: Global dynamics of a mechanical system with dry friction. J. Differ. Eqn. 265, 5490–5519 (2018)
    • 5. Chen, H., Tang, Y.: An oscillator with two discontinuous lines and Van der Pol damping. Bull. Sci. Math. 161, 102867 (2020)
    • 6. Chen, H., Wei, F., Xia, Y., Xiao, D.: Global dynamics of an asymmetry piecewise linear differential system: theory and applications. Bull....
    • 7. di Bernardo, M., Budd, C.J., Champneys, A.R.: Grazing, skipping and sliding: Analysis of the nonsmooth dynamics of the DC/DC buck converter....
    • 8. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, London...
    • 9. Euzbio, R.D., Pazim, R., Ponce, E.: Jump bifurcations in some degenerate planar piecewise linear differential systems with three zones....
    • 10. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988)
    • 11. Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11, 181–211 (2012)
    • 12. Freire, E., Ponce, E., Torres, F.: General mechanism to generate three limit cycles in planar Filippov systems with two zones. Nonlinear...
    • 13. Giannakopoulos, F., Pliete, K.: Planar systems of piecewise linear differential equations with a line of discontinuity. Nonlinearity 14,...
    • 14. Giannakopoulos, F., Pliete, K.: Closed trajectories in planar relay feedback systems. Dyn. Syst. 17, 343–358 (2002)
    • 15. Han, Y., Cao, Q., Chen, Y., Wiercigroch, M.: A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Sci. China-Phys....
    • 16. Han, Y., Cao, Q., Chen, Y., Wiercigroch, M.: Chaotic thresholds for the piecewise linear discontinuous system with multiple well potentials....
    • 17. Huan, S., Yang, X.: On the number of limit cycles in general planar piecewise linear systems of node-node types. J. Math. Anal. Appl....
    • 18. Kowalczyk, P., Piiroinen, P.T.: Two-parameter sliding bifurcations of periodic solutions in a dry-friction oscillator. Physica D 237,...
    • 19. Kuznetsov, Yu.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifur. Chaos 13, 2157–2188...
    • 20. Llibre, J., Teixeira, M.A.: Piecewise linear differential systems without equilibria produce limit cycles? Nonlinear Dyn. 88, 157–164...
    • 21. Llibre, J., Zhang, X.: Limit cycles for discontinuous planar piecewise linear differential systems separated by one straightline and having...
    • 22. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Physica D 241, 1826–1844 (2012)
    • 23. Siewniak, P., Grzesik, B.: The piecewise-affine model of buck converter suitable for practical stability analysis. Int. J. Circ. Theor....
    • 24. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations. Transl. Math. Monogr. Amer. Math. Soc., Providence...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno