Ir al contenido

Documat


Comparative of Clustering Techniques for Academic Advice and Performance Measurement

  • María Teresa García-Ordás [1] ; José Antonio López-Vázquez [2] ; Héctor Alaiz-Moretón [1] ; José Luis Casteleiro-Roca [1] ; David Yeregui Marcos del Blanco [3] ; Roberto Casado-Vara [4] ; José Luis Calvo-Rolle [2]
    1. [1] Universidad de León

      Universidad de León

      León, España

    2. [2] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

    3. [3] Universidad IE

      Universidad IE

      Segovia, España

    4. [4] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

  • Localización: The 11th International Conference on EUropean Transnational Educational: (ICEUTE 2020) / Álvaro Herrero Cosío (ed. lit.) Árbol académico, Carlos Cambra Baseca (ed. lit.) Árbol académico, Daniel Urda Muñoz (ed. lit.) Árbol académico, Javier Sedano Franco (ed. lit.) Árbol académico, Héctor Quintián Pardo (ed. lit.) Árbol académico, Emilio Santiago Corchado Rodríguez (ed. lit.) Árbol académico, 2021, ISBN 3-030-57798-8, págs. 215-226
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This article presents an innovative proposal for improving personalized student performance counselling. The methodology implemented applies clustering techniques in order to obtain group profiles of students with similar features. The research has been performed utilizing anonymized real academic grades from student data sets of the Polytechnic School of the University of A Coruñaa. The ultimate purpose for the proposed tool is to be dynamic and adaptive to different data sets. Therefore, only the most representative, universal variables are considered. Overall, three techniques have been evaluated for clustering, with two additional ones for dimensional reduction with very promising results.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno