Ir al contenido

Documat


Liouville Results for Double Phase Problems in RN

  • Phuong Le [1]
    1. [1] Vietnam National University & University of Economics and Law (Ho Chi Minh City, Vietnam)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We prove Liouville theorems for the double phase problem −div(|∇u| p−2∇u + w(x)|∇u| q−2∇u) = f (x)|u| r−1u in RN , where q ≥ p ≥ 2,r > q−1 and w, f ∈ L1 loc(RN ) are two nonnegative functions such that w(x) ≤ C1|x| a and f (x) ≥ C2|x| b for all |x| > R0, where R0,C1,C2 > 0 and a, b ∈ R. Our Liouville results hold for stable solutions in dimension N < N, where N is explicitly computed. We also prove Liouville theorems for finite energy solutions as well as solutions stable outside a compact set when N+b r+1 > max N−p p , N−q+a q .

      Methods of integral estimates and a Pohožaev type identity for double phase problems are exploited in our proofs.

  • Referencias bibliográficas
    • 1. Bahrouni, A., R˘adulescu, V.D., Repovš, D.D.: Double phase transonic flow problems with variable growth: nonlinear patterns and stationary...
    • 2. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)
    • 3. Benci, V., D’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions....
    • 4. Canino, A., Le, P., Sciunzi, B.: Local W2,m(·) loc regularity for p(·) -Laplace equations. Manuscripta Math. 140, 481–496 (2013)
    • 5. Castorina, D., Esposito, P., Sciunzi, B.: Low dimensional instability for semilinear and quasilinear problems in RN . Commun. Pure Appl....
    • 6. Cherfils, L., Ilyasov, Y.: On the stationary solutions of generalized reaction diffusion equations withpq -Laplacian. Commun. Pure. Appl....
    • 7. Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. 195, 1917–1959 (2016)
    • 8. Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)
    • 9. Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443–496 (2015)
    • 10. Damascelli, L., Farina, A., Sciunzi, B., Valdinoci, E.: Liouville results for m -Laplace equations of Lane–Emden–Fowler type. Ann. Inst....
    • 11. Damascelli, L., Sciunzi, B.: Regularity, monotonicity and symmetry of positive solutions of m -Laplace equations. J. Differ. Equ. 206,...
    • 12. DiBenedetto, E.: C1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7, 827–850 (1983)
    • 13. Dupaigne, L., Farina, A.: Stable solutions of −u = f (u) in RN . J. Eur. Math. Soc. (JEMS) 12, 855–882 (2010)
    • 14. Farina, A.: On the classification of solutions of the Lane–Emden equation on unbounded domains of RN . J. Math. Pures Appl. 87, 537–561...
    • 15. Farina, A.: Stable solutions of −u = eu on RN . C. R. Math. Acad. Sci. Paris 345, 63–66 (2007)
    • 16. Gasi ´nski, L., Winkert, P.: Constant sign solutions for double phase problems with superlinear nonlinearity. Nonlinear Anal. 195, 111739...
    • 17. Gasi ´nski, L., Winkert, P.: Existence and uniqueness results for double phase problems with convection term. J. Differ. Equ. 268, 4183–4193...
    • 18. Gasi ´nski, L., Winkert, P.: Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold....
    • 19. Ge, B., Lv, D.-J., Lu, J.-F.: Multiple solutions for a class of double phase problem without the Ambrosetti–Rabinowitz conditions. Nonlinear...
    • 20. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598...
    • 21. Jikov, V.V., Kozlov, S.M., Ole˘ınik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)....
    • 22. Le, P.: Liouville theorems for stable solutions of p -Laplace equations with convex nonlinearities. J. Math. Anal. Appl. 443, 431–444...
    • 23. Le, P., Ho, V.: Stable solutions to weighted quasilinear problems of Lane–Emden type. Electron. J. Differ. Equ. 11, 71 (2018)
    • 24. Le, P., Ho, V.: Liouville results for stable solutions of quasilinear equations with weights. Acta Math. Sci. Ser. B (Engl. Ed.) 39, 357–368...
    • 25. Liu, W., Dai, G.: Existence and multiplicity results for double phase problem. J. Differ. Equ. 265, 4311–4334 (2018)
    • 26. Marcellini, P.: Regularity and existence of solutions of elliptic equations with p, q -growth conditions. J. Differ. Equ. 90, 1–30 (1991)
    • 27. Papageorgiou, N.S., Repovš, D.D., Vetro, C.: Positive solutions for singular double phase problems. J. Math. Anal. Appl. 501, 123896 (2021)
    • 28. Perera, K., Squassina, M.: Existence results for double-phase problems via Morse theory. Commun. Contemp. Math. 20, 1750023 (2018)
    • 29. Serrin, J., Zou, H.: Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math....
    • 30. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)
    • 31. Wang, C., Ye, D.: Some Liouville theorems for Hénon type elliptic equations. J. Funct. Anal. 262, 1705–1727 (2012)
    • 32. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 50, 675–710...
    • 33. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)
    • 34. Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 5(1997), 105–116 (1998)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno