Ir al contenido

Documat


Betti numbers of the conormal module of licci rings

  • Mark R. Johnson [1] ; Paolo Mantero [1]
    1. [1] Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 2, 2022, págs. 295-304
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00320-x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We establish lower bounds for the Betti numbers of the conormal module for licci ideals in a regular local ring. In particular, for a licci Gorenstein ideal I, the i-th Betti number of I/II/I^{2} is at least 5f_{2i-1}, for i\ge 1, where f_{n} is the n-th Fibonacci number.

  • Referencias bibliográficas
    • Avramov, L. L.: Infinite free resolutions. Six lectures on commutative algebra (Bellaterra, 1996), 1–118, Progr. Math., 166, Birkhäuser, Basel,...
    • Avramov, L.L., Iyengar, S.B., Sega, L.M.: Short Koszul modules. J. Commut. Algebra 2(3), 249–279 (2010)
    • Avramov, L.. L.., Herzog, J.: Jacobian criteria for complete intersections. The graded case, Invent. Math. 117, 75–88 (1994)
    • Briggs, B.: Vasconcelos’ conjecture on the conormal module, arXiv preprint, available at https://arxiv.org/abs/2006.04247
    • Buchweitz, R. O.: Contributions á la théorie des singulatiés, thesis, Paris, 1981
    • Buchweitz, R. O., Ulrich, B.: Homological properties which are invariant under linkage, unpublished manuscript
    • Conca, A.: Universally Koszul algebras. Math. Ann. 317, 329–346 (2000)
    • Ferrand, D.: Suite régulière et intersection complète, C. R. Acad. Sci. Paris Sér. A-B 264, A427–A428 (1967)
    • Gulliksen, T.H.: On the deviations of a local ring. Math. Scand. 47(1), 5–20 (1980)
    • Herzog, J.: Ein Cohen-Macaulay-Kriterium mit Anwendungen auf den Konormalenmodul und den Differentialmodul. Math. Z. 163(2), 149–162 (1978)
    • Herzog, J.: Homological properties of the module of differentials. Atlas VI Escola de Algebra 33–64 (1980)
    • Herzog, J.: Deformationen von Cohen-Macaulay Algebren. J. Reine Angew. Math. 318, 83–105 (1980)
    • Herzog, J., Hibi, T., Restuccia, G.: Strongly Koszul algebras. Math. Scand. 86(2), 161–178 (2000)
    • Huneke, C.: Linkage and the Koszul homology of ideals. Am. J. Math. 104(5), 1043–1062 (1982)
    • Huneke, C., Ulrich, B.: The structure of linkage. Ann. Math. 126, 277–334 (1987)
    • Huneke, C., Ulrich, B.: Algebraic linkage. Duke. Math. J. 56, 415–429 (1988)
    • Huneke, C., Ulrich, B.: Powers of Licci ideals, Commutative algebra (Berkeley, CA, 1987), 339–346, Math. Sci. Res. Inst. Publ., 15, Springer,...
    • Huneke, C., Ulrich, B.: Local properties of licci ideals. Math. Z. 211(1), 129–154 (1992)
    • Jorgensen, D.A., Leuschke, G.J.: On the growth of the Betti sequence of the canonical module. Math. Z. 256, 647–659 (2007)
    • Ulrich, B.: Theory and applications of universal linkage, commutative algebra and combinatorics. Adv. Studi. Pure Math. 11, 285–301 (1987)
    • Vasconcelos, W.V.: On the homology of I/I^{2}. Comm. Alg. 6, 1801–1809 (1978)
    • Vasconcelos, W.V.: Ideals generated by R-sequences. J. Algebra 6, 309–316 (1967)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno