Ir al contenido

Documat


Semiregular and strongly irregular boundary points for p-harmonic functions on unbounded sets in metric spaces

  • Anders Björn [1] ; Daniel Hansevi [1]
    1. [1] Linköping University

      Linköping University

      Linköpings S:t Lars, Suecia

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 2, 2022, págs. 253-270
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00317-6
  • Enlaces
  • Resumen
    • The trichotomy between regular, semiregular, and strongly irregular boundary points for p-harmonic functions is obtained for unbounded open sets in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, 1 p \infty. We show that these are local properties. We also deduce several characterizations of semiregular points and strongly irregular points. In particular, semiregular points are characterized by means of capacity, p-harmonic measures, removability, and semibarriers.

  • Referencias bibliográficas
    • Adamowicz, T., Björn, A., Björn, J.: Regularity of p(\cdot )-superharmonic functions, the Kellogg property and semiregular boundary points....
    • Björn, A.: Characterizations of p-superharmonic functions on metric spaces. Stud. Math. 169, 45–62 (2005)
    • Björn, A.: Removable singularities for bounded p-harmonic and quasi(super)harmonic functions on metric spaces. Ann. Acad. Sci. Fenn. Math....
    • Björn, A.: A regularity classification of boundary points for p-harmonic functions and quasiminimizers. J. Math. Anal. Appl. 338, 39–47 (2008)
    • Björn, A., Björn, J.: Boundary regularity for p-harmonic functions and solutions of the obstacle problem on metric spaces. J. Math. Soc. Jpn....
    • Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17. European Mathematical Society, Zürich...
    • Björn, A., Björn, J., Li, X.: Sphericalization and p-harmonic functions on unbounded domains in Ahlfors regular metric spaces. J. Math. Anal....
    • Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet problem for p-harmonic functions on metric spaces. J. Reine Angew. Math. 556, 173–203...
    • Björn, A., Björn, J., Shanmugalingam, N.: The Perron method for p-harmonic functions in metric spaces. J. Differ. Equ. 195, 398–429 (2003)
    • Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces....
    • Björn, A., Hansevi, D.: Boundary regularity for p-harmonic functions and solutions of obstacle problems on unbounded sets in metric spaces....
    • Björn, A., Marola, N.: Moser iteration for (quasi)minimizers on metric spaces. Manuscr. Math. 121, 339–366 (2006)
    • Björn, J.: Boundary continuity for quasiminimizers on metric spaces. Ill. J. Math. 46, 383–403 (2002)
    • Björn, J., MacManus, P., Shanmugalingam, N.: Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces. J. Anal....
    • Hansevi, D.: The obstacle and Dirichlet problems associated with p-harmonic functions in unbounded sets in {\mathbb{R}}^{n} and metric spaces....
    • Hansevi, D.: The Perron method for p-harmonic functions in unbounded sets in {\mathbb{R}}^{n} and metric spaces. Math. Z. 288, 55–74 (2018)
    • Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)
    • Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces. New Mathematical Monographs, vol. 27....
    • Kinnunen, J., Martio, O.: Nonlinear potential theory on metric spaces. Ill. J. Math. 46, 857–883 (2002)
    • Kinnunen, J., Shanmugalingam, N.: Regularity of quasi-minimizers on metric spaces. Manuscr. Math. 105, 401–423 (2001)
    • Koskela, P., MacManus, P.: Quasiconformal mappings and Sobolev spaces. Stud. Math. 131, 1–17 (1998)
    • Lebesgue, H.: Conditions de régularité, conditions d’irrégularité, conditions d’impossibilité dans le problème de Dirichlet. C. R. Acad. Sci....
    • Lukeš, J., Malý, J.: On the boundary behaviour of the Perron generalized solution. Math. Ann. 257, 355–366 (1981)
    • Munkres, J.R.: Topology, 2nd edn. Prentice Hall, Upper Saddle River (2000)
    • Perron, O.: Eine neue Behandlung der ersten Randwertaufgabe für \Delta u=0. Math. Z. 18, 42–54 (1923)
    • Remak, R.: Über potentialkonvexe Funktionen. Math. Z. 20, 126–130 (1924)
    • Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)
    • Wiener, N.: The Dirichlet problem. J. Math. Phys. 3, 127–146 (1924)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno