Ir al contenido

Documat


Homological aspects of derivation modules and critical case of the Herzog–Vasconcelos conjecture

  • Victor H. Jorge-Pérez [1] ; Cleto B. Miranda-Neto [2]
    1. [1] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    2. [2] Universidade Federal da Paraíba

      Universidade Federal da Paraíba

      Brasil

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 2, 2022, págs. 203-219
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00314-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let R be a Noetherian local k-algebra whose derivation module {\mathrm{Der}}_k(R) is finitely generated. Our main goal in this paper is to investigate the impact of assuming that {\mathrm{Der}}_k(R) has finite projective dimension (or finite Gorenstein dimension), mainly in connection with freeness, under a suitable hypothesis concerning the vanishing of (co)homology or the depth of a certain tensor product. We then apply some of our results towards the critical case {\mathrm{depth}}\,R=3 of the Herzog–Vasconcelos conjecture and consequently to the strong version of the Zariski–Lipman conjecture.

  • Referencias bibliográficas
    • Auslander, M.: Modules over unramified regular local rings. Illinois J. Math. 5, 631–647 (1961)
    • Auslander, M., Bridger, M.: Stable Module Theory. American Mathematical Society, Providence, RI (1969)
    • Avramov, L.L., Buchweitz, R.-O.: Support varieties and cohomology over complete intersections. Invent. Math. 142, 285–318 (2000)
    • Bayer, D., Stillman, M.: Macaulay: a computer algebra system for algebraic geometry, Macaulay version 3.0 1994 (Macaulay for Windows by Bernd...
    • Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Revised Cambridge University Press, Cambridge (1998)
    • Christensen, L.W.: Gorenstein Dimensions. Lecture Notes in Math, vol. 1747. Springer, Berlin (2000)
    • Flenner, H.: Extendability of differential forms on non-isolated singularities. Invent. Math. 94, 317–326 (1988)
    • Herzog, J.: The module of differentials, Lecture notes, Workshop on Commmutative Algebra and its Relation to Combinatorics and Computer Algebra,...
    • Herzog, J., Martsinkovsky, A.: Gluing Cohen-Macaulay modules with applications to quasihomogeneous complete intersections with isolated singularities....
    • Hochster, M.: The Zariski-Lipman conjecture in the graded case. J. Algebra 47, 411–424 (1977)
    • Hübl, R.: Derivations and the integral closure of ideals, with an appendix by Irena Swanson. Proc. Am. Math. Soc. 127, 3503–3511 (1999)
    • Huneke, C., Jorgensen, D.A.: Symmetry in the vanishing of Ext over Gorenstein rings. Math. Scand. 93, 161–184 (2003)
    • Huneke, C., Leuschke, G.J.: Two theorems about maximal Cohen–Macaulay modules. Math. Ann. 324, 391–404 (2002)
    • Huneke, C., Leuschke, G.J.: On a conjecture of Auslander and Reiten. J. Algebra 275, 781–790 (2004)
    • Iyengar, S., Puthenpurakal, T.J.: Hilbert-Samuel functions of modules over Cohen-Macaulay rings. Proc. Am. Math. Soc. 135, 637–648 (2007)
    • Jorgensen, D.A.: Finite projective dimension and the vanishing of {{\rm Ext}}_R(M, M). Commun. Algebra 36, 4461–4471 (2008)
    • Källström, R.: The Zariski-Lipman conjecture for complete intersections. J. Algebra 337, 169–180 (2011)
    • Kunz, E.: Kähler Differentials. Vieweg, Adv. Lectures Math (1986)
    • Lipman, J.: Free derivation modules on algebraic varieties. Am. J. Math. 87, 874–898 (1965)
    • Maloo, A.K.: Differential simplicity and the module of derivations. J. Pure Appl. Algebra 115, 81–85 (1997)
    • Maloo, A.K.: The module of derivations of regular local rings. Commun. Algebra 27, 6123–6126 (1999)
    • Martsinkovsky, A.: Almost split sequences and Zariski differentials. Trans. Am. Math. Soc. 319, 285–307 (1990)
    • Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)
    • Miller, C.: Complexity of tensor products of modules and a theorem of Huneke–Wiegand. Proc. Am. Math. Soc. 126, 53–60 (1998)
    • Miranda-Neto, C.B.: Free logarithmic derivation modules over factorial domains. Math. Res. Lett. 24, 153–172 (2017)
    • Miranda-Neto, C.B., Souza, T.S.: A generalization of Maloo’s theorem on freeness of derivation modules. Pacific J. Math. 302, 693–708 (2019)
    • Müller, G., Patil, D.P.: The Herzog-Vasconcelos conjecture for affine semigroup rings. Commun. Algebra 27, 3197–3200 (1999)
    • Scheja, G., Storch, U.: Differentielle Eigenschaften der Lokalisierungen analytischer Algebren. Math. Ann. 197, 137–170 (1972)
    • Şega, L.M.: Vanishing of cohomology over Gorenstein rings of small codimension. Proc. Am. Math. Soc. 131, 2313–2323 (2002)
    • Strooker, J.R.: Homological questions in local algebra, London Math. Soc. Lect. Note Ser. 145, Cambridge University Press, Cambridge (1990)
    • Vasconcelos, W.V.: The complete intersection locus of certain ideals. J. Pure Appl. Algebra 38, 367–378 (1985)
    • Yoshida, K.-I.: Tensor products of perfect modules and maximal surjective Buchsbaum modules. J. Pure Appl. Algebra 123, 313–326 (1998)
    • Yoshino, Y., Kato, K.: Auslander modules and quasi-homogeneity of local rings. Publ. Res. Inst. Math. Sci., Kyoto Univ. 30, 1009–1038 (1994)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno