Ir al contenido

Documat


Homological aspects of derivation modules and critical case of the Herzog–Vasconcelos conjecture

  • Victor H. Jorge-Pérez [1] ; Cleto B. Miranda-Neto [2]
    1. [1] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    2. [2] Universidade Federal da Paraíba

      Universidade Federal da Paraíba

      Brasil

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 2, 2022, págs. 203-219
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00314-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let R be a Noetherian local k-algebra whose derivation module {\mathrm{Der}}_k(R) is finitely generated. Our main goal in this paper is to investigate the impact of assuming that {\mathrm{Der}}_k(R) has finite projective dimension (or finite Gorenstein dimension), mainly in connection with freeness, under a suitable hypothesis concerning the vanishing of (co)homology or the depth of a certain tensor product. We then apply some of our results towards the critical case {\mathrm{depth}}\,R=3 of the Herzog–Vasconcelos conjecture and consequently to the strong version of the Zariski–Lipman conjecture.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno