Ir al contenido

Documat


Dynamical Analysis for a Malaria Transmission Model

  • Zhihong Zhao [2] ; Shaochun Li [2] ; Zhaosheng Feng [1]
    1. [1] University of Texas Rio Grande Valley

      University of Texas Rio Grande Valley

      Estados Unidos

    2. [2] University of Science & Technology Beijing
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we present a malaria transmission model with climatic factors to study the climatic transmission dynamics of malaria with the effect of the Serratia AS1 bacterium. It has been shown in controlled laboratory experiments that Serratia AS1 bacterium can rapidly disseminate throughout mosquito populations and efficiently inhibit development of malaria parasites in mosquitoes. We derive the basic reproduction ratio R0. We introduce the basic reproduction ratio R0 which can be used as a threshold parameter in the global dynamical model. When R0 ≤ 1, the disease-free periodic solution of this model is globally asymptotically stable; and when R0 > 1, the disease remains persistent. We analyze the sensitivity of R0 in terms of the vertical and horizontal transmission rates of Serratia AS1, and find that R0 can be small when the vertical transmission rate of Serratia AS1 tends to 1 and the influence of the horizontal transmission rate performs inversely proportional to R0 when the vertical transmission rate is less than 1. Based on the data of Luanda, we perform numerical simulations to illustrate our theoretical results, which indicate that treatment of Serratia AS1 provides us an effective measure in controlling malaria.

  • Referencias bibliográficas
    • 1. Arino, J., Ducrot, A., Pascal, Z.: A metapopulation model for malaria with transmission-blocking partial immunity in hosts. J. Math. Biol....
    • 2. The World Bank, Angola, https://climateknowledgeportal.worldbank.org/country/angola/climatedata-historical
    • 3. Buonomo, B., Vargas-De-León, C.: Stability and bifurcation analysis of a vector-bias model of malaria transmission. Math. Biosci. 242,...
    • 4. Cai, L.M., Ai, S., Li, J.: Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J. Appl....
    • 5. Central Intelligence Agency, The World Factbook, https://www.cia.gov/the-world-factbook/countries/ angola/#people-and-society
    • 6. Chanda, E.: Measuring the effect of insecticide resistance: Are we making progress? Lancet Infect. Dis. 18, 586–588 (2018)
    • 7. Chitnis, N., Hardy, D., Smith, T.: A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes. Bull. Math....
    • 8. Chitnis, N., Hyman, J., Cushing, J.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical...
    • 9. Christodoulou, M.: Biological vector control of mosquito-borne diseases. Lancet Infect. Dis. 11, 84–85 (2011)
    • 10. Conrad, M., Rosenthal, P.: Antimalarial drug resistance in africa: The calm before the storm? Lancet Infect. Dis. 19, 338–351 (2019)
    • 11. Dutra, H.L., Rocha, M., Dias, F., Mansur, S., Caragata, E., Moreira, L.: Wolbachia blocks currently circulating Zika virus isolates in...
    • 12. Dyck, V.A., Hendrichs, J., Robinson, A.S.: Sterile insect technique principles and practice in area-wide integrated pest management. Springer,...
    • 13. Gao, D., Ruan, S.: A multipatch malaria model with logistic growth populations. SIAM J. Appl. Math. 72, 819–841 (2012)
    • 14. Ngarakana-Gwasira, E.T., Bhunu, C.P., Mashonjowa, E.: Assessing the impact of temperature on malaria transmission dynamics. Afr. Mat....
    • 15. Hale, J., Verduyn Lunel, S.M.: Introduction to Functional-Differential Equations, Applied Mathematical Sciences, vol. 99. Springer-Verlag,...
    • 16. Imwong, M., et al.: Molecular epidemiology of resistance to antimalarial drugs in the greater mekong subregion: an observational study....
    • 17. Kleinschmidt, I., et al.: Implications of insecticide resistance for malaria vector control with longlasting insecticidal nets: a who-coordinated,...
    • 18. Koosha, M., Vatandoost, H., Karimian, F., et al.: Delivery of a genetically marked serratia AS1 to medically important arthropods for...
    • 19. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston (1993)
    • 20. Li, J., Yuan, Z.: Modelling releases of sterile mosquitoes with different strategies. J. Biol. Dyn. 9, 1–14 (2015)
    • 21. Lou, Y., Zhao, X.Q.: A climate-based malaria transmission model with structured vector population. SIAM J. Appl. Math. 70, 2023–2044 (2010)
    • 22. MacDonald, G.: The Epidemiology and Control of Malaria. Oxford University Press, London (1957)
    • 23. Mordecai, E.A., et al.: Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16(1),...
    • 24. Moreira, L., et al.: A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278...
    • 25. Ngonghala, C.N., Teboh-Ewungkem, M.I., Ngwa, G.A.: Persistent oscillations and backward bifurcation in a malaria model with varying human...
    • 26. Ngwa, G.A., Niger, A.M., Gumel, A.B.: Mathematical assessment of the role of non-linear birth and maturation delay in the population dynamics...
    • 27. Okuonghae, D.: Backward bifurcation of an epidemiological model with saturated incidence, isolation and treatment functions. Qual. Theory...
    • 28. Qin, Y.: On periodic solutionsof Riccat’s equation with periodic coefficients. Chin. Sci. Bull. 23, 1062–1066 (1979)
    • 29. Ross, R.: The Prevention of Malaria. John Murray, London (1911)
    • 30. Ruan, S., Xiao, D., Beier, J.: On the delayed Ross-Macdonald model for malaria transmission. Bull. Math. Biol. 70, 1098–1114 (2008)
    • 31. Thieme, H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl....
    • 32. Traoré, B., Koutou, O., Sangaré, B.: A global mathematical model of malaria transmission dynamics with structured mosquito population...
    • 33. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission....
    • 34. Wang, S., Dos-santos, A., Huang, W., Liu, K., Oshaghi, M., Wei, G., Agre, P., Jacobs-Lorena, M.: Driving mosquito refractoriness to Plasmodium...
    • 35. Wang, W., Zhao, X.Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717...
    • 36. Wang, X., Zou, X.: Modeling the potential role of engineered symbiotic bacteria in malaria control. Bull. Math. Biol. 81, 2569–2595 (2019)
    • 37. World Health Organisation (WHO), Malaria, https://www.who.int/zh/news-room/fact-sheets/detail/malaria
    • 38. World Health Organisation (WHO), World Malaria Report 2020, https://www.who.int/publications/i/item/9789241565721
    • 39. World Population Review, Angola Population 2021, https://worldpopulationreview.com/countries/angola-population
    • 40. Xiao, Y., Zou, X.: Transmission dynamics for vector-borne diseases in a patchy environment. J. Math. Biol. 69, 113–146 (2014)
    • 41. Xiao, Y., Zou, X.: On latencies in malaria infections and their impact on the disease dynamics. Math. Biosci. Eng. 10, 463–481 (2013)
    • 42. Zhang, F., Zhao, X.Q.: A periodic epidemic model in a patchy environment. J. Math. Anal. Appl. 325, 496–516 (2007)
    • 43. Zhang, Z.G., Li, Y., Feng, Z.: Exponential stability of traveling waves in a nonlocal dispersal epidemic model with delay. J. Comput....
    • 44. Zhao, X.Q.: Dynamical Systems in Population Biology. Springer-Verlag, New York (2003)
    • 45. Zheng, X., Zhang, D., Li, Y., et al.: Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno