Ir al contenido

Documat


Product Type Potential on the One-Dimensional Lattice Systems: Selection of Maximizing Probability and a Large Deviation Principle

  • J. Mohr [1]
    1. [1] UFRGS (Brasil)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 2, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Given an uncountable and compact metric space E, the one-dimensional lattice system is the space Ω=EN with an a priori measure p on the state space E. Given a potential f:Ω→R one can ask: among the invariant probabilities which one is the equilibrium probability μ for the interaction described by f? As usual the equilibrium probability for f is the one maximizing pressure. We will present here the case of the product type potential on the one-dimensional lattice system and in this setting we can show the explicit expression of the equilibrium probability. We will also consider questions about Ergodic Optimization, maximizing probabilities, subactions and we will show selection of a maximizing probability, when temperature goes to zero. Finally we show a large deviation principle when temperature goes to zero and we present an explicit expression for the deviation function.

  • Referencias bibliográficas
    • 1. Aguiar, D., Cioletti, L., Ruviaro, R.: A variational principle for the specific entropy for symbolic systems with uncountable alphabets....
    • 2. Baraviera, A., Leplaideur, R., Lopes, A. O.: Ergodic optimization, zero temperature limits and the maxplus algebra. In: IMPA Mathematical...
    • 3. Baraviera, A.T., Cioletti, L.M., Lopes, A.O., Mohr, J., Souza, R.R.: On the general one-dimensional XY Model: positive and zero temperature,...
    • 4. Cioletti, L., Denker, M., Lopes, A.O., Stadlbauer, M.: Spectral properties of the Ruelle operator for product type potentials on shift...
    • 5. Coronel, D., Rivera-Letelier, J.: Sensitive dependence of Gibbs measures at low temperature. J. Stat. Phys. 160, 1658–1683 (2015)
    • 6. Cioletti, L., Da Silva, E.: Spectral properties of the Ruelle operator on the Walters class over compact spaces. Nonlinearity 29, 2253...
    • 7. Fukui, Y., Horiguchi, M.: One-dimensional Chiral XY Model at finite temperature. Interdis. Inform. Sci. 1(2), 133–149 (1995)
    • 8. Garibaldi, E.: Ergodic optimization in the expanding case, Concepts, tools and applications. Springer Briefs in Mathematics, p. viii+73....
    • 9. Lopes, A.O., Mengue, J., Mohr, J., Souza, R.R.: Entropy and variational principle for one-dimensional lattice systems with a general a...
    • 10. Lopes, A.O., Mohr, J., Souza, R.R., Thieullen, Ph.: Negative entropy, zero temperature and Markov chains on the interval. Bull. Brazil....
    • 11. Murray, J.D.: Asymptot. Anal. Springer-Verlag, New York (1984)
    • 12. van Enter, A.C.D., Ruszel, W.M.: Chaotic temperature dependence at zero temperature. J. Stat. Phys. 127(3), 567–573 (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno