Ir al contenido

Documat


Persistence of Invariant Tori in Infinite-Dimensional Hamiltonian Systems

  • Peng Huang [1]
    1. [1] Guizhou University of Finance and Economics

      Guizhou University of Finance and Economics

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 2, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the persistence of invariant tori in infinite-dimensional Hamiltonian systems H=⟨ω,I⟩+P(θ,I,ω), where θ∈TΛ, I∈RΛ, the frequency ω=(⋯,ωλ,⋯)λ∈Λ is regarded as parameters varying freely over some subset ℓ∞(Λ,R) of the parameter space RΛ, ω=(⋯,ωλ,⋯)λ∈Λ is a bilateral infinite sequence of rationally independent frequency, in other words, any finite segments of ω=(⋯,ωλ,⋯)λ∈Λ are rationally independent.

  • Referencias bibliográficas
    • 1. Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of...
    • 2. Biasco, L., Massetti, J., Procesi, M.: An abstract Birkhoff normal form theorem and exponential type stability of the 1D NLS. Commun. Math....
    • 3. Bourgain, J.: On invariant tori of full dimension for 1D periodic NLS. J. Funct. Anal. 229, 62–94 (2005)
    • 4. Cheng, C.Q., Sun, Y.S.: Existence of KAM tori in degenerate Hamiltonian systems. J. Differ. Equ. 114, 288–335 (1994)
    • 5. Chierchia, L., Perfetti, P.: Maximal almost-periodic solutions for Lagrangian equations on infinite dimensional tori. In: Seminar on Dynamical...
    • 6. Chow, S.-N., Li, Y., Yi, Y.: Persistence of invariant tori on submanifolds in Hamiltonian systems. J. Nonlinear Sci. 12, 585–617 (2002)
    • 7. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Annali della Scuola Normale Superiore di Pisa 15, 115–147...
    • 8. Fröhlich, J., Spencer, T., Wayne, C.E.: Localization in disordered, nonlinear dynamical systems. J. Stat. Phys. 42, 247–274 (1986)
    • 9. Huang, P., Li, X.: Persistence of invariant tori in integrable Hamiltonian systems under almost periodic perturbations. J. Nonlinear Sci....
    • 10. Kolmogorov, A.N.: On the conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR...
    • 11. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21(3), 192–205...
    • 12. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)
    • 13. Montalto, R., Procesi, M.: Linear Schrödinger equation with an almost periodic potential. SIAM J. Math. Anal. 53, 386–434 (2021)
    • 14. Pöschel, J.: On elliptic lower dimensional tori in Hamiltonian systems. Math. Z. 202, 559–608 (1989)
    • 15. Pöschel, J.: Small divisors with spatial structure in infinite dimensional Hamiltonian systems. Commun. Math. Phys. 127, 351–393 (1990)
    • 16. Pöschel, J.: A lecture on the classical KAM theorem. Proc. Symp. Pure Math. 69, 701–732 (2001)
    • 17. Pöschel, J.: On the construction of almost periodic solutions for a nonlinear Schrödinger equation. Ergod. Theory Dyn. Syst. 22(5), 1537–1549...
    • 18. Rüssmann, H.: Nondegeneracy in the perturbation theory of integrable dynamical systems. In: Stochastics Algebra and Analysis in Classical...
    • 19. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6, 119–204 (2001)
    • 20. Sevryuk, M.B.: KAM-stable Hamiltonians. J. Dyn. Control Syst. 1, 351–366 (1995)
    • 21. Sevryuk, M.B.: Partial preservation of frequencies in KAM theory. Nonlinearity 19, 1099–1140 (2006)
    • 22. Vittot, M., Bellissard, J.: Invariant tori for an infinite lattice of coupled classical rotators. CPT-Marseille, Preprint (1985)
    • 23. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)
    • 24. Wu, Y., Yuan, X.: On the Kolmogorov theorem for some infinite-dimensional Hamiltonian systems of short range. Nonlinear Anal. 202, Paper...
    • 25. Xu, J., You, J., Qiu, Q.: Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375–387 (1997)
    • 26. Xu, J., You, J.: Persistence of the non-twist torus in nearly integrable Hamiltonian systems. Proc. Am. Math. Soc. 138, 2385–2395 (2010)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno