Ir al contenido

Documat


Dynamics of the Non-autonomous Boy-After-Girl System

  • Autores: Salam M. Ghazi Al Mohanna, Yong Hui Xia
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 2, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, the non-autonomous boy after girl dynamical system was investigated.

      For the general case, we study some properties such as non-persistence, ultimately boundedness, permanence and globally asymptotical stability. For the periodic case, we study the existence of a periodic solution. For the almost periodic case, we study the existence, uniqueness and stability of almost periodic solution. Finally, we introduce several examples and their numerical simulations to verify our theoretical results.

  • Referencias bibliográficas
    • 1. Barbalat, I.: System d’equations differential d’oscillations nonlinearies. Rev. Roumaine Math. Pure Appl. 4(2), 267–270 (1959)
    • 2. Chen, F.: On a periodic multi-species ecological model. Appl. Math. Comput. 171(1), 492–510 (2005)
    • 3. Chen, F.: Positive periodic solutions of neutral Lotka–Volterra system with feedback control. Appl. Math. Comput. 162(3), 1279–1302 (2005)
    • 4. Chen, F., Li, Z., Chen, X., Laitochová, J.: Dynamic behaviors of a delay differential equation model of plankton allelopathy. J. Comput....
    • 5. Chen, F., Lin, F., Chen, X.: Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with...
    • 6. Chen, L., Chen, F., Chen, L.: Qualitative analysis of a predator-prey model with Holling type ii functional response incorporating a constant...
    • 7. Chen, L., Song, X., Lu, Z.: Mathematical Models and Methods in Ecology (1988)
    • 8. Chen, X., Du, Z.: Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell–Varley type functional...
    • 9. Chen, Y.: Multiple periodic solutions of delayed predator-prey systems with type iv functional responses. Nonlinear Anal. Real World Appl....
    • 10. Du, Z., Feng, Z.: Periodic solutions of a neutral impulsive predator-prey model with Beddington– Deangelis functional response with delays....
    • 11. Fan, M.,Wang, K.,Wong, P., Agarwal, R.: Periodicity and stability in periodic n-species Lotka–Volterra competition system with feedback...
    • 12. Fan, M., Wang, Q., Zou, X.: Dynamics of a non-autonomous ratio-dependent predator–prey system. Proc. Sect. A Math. R. Soc. Edinb. 133(1),...
    • 13. Freedman, H.I., Wu, J.H.: Persistence and global asymptotic stability of single species dispersal models with stage structure. Q. Appl....
    • 14. Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations, vol. 568. Springer, Berlin (2006)
    • 15. Liu, Q., Jiang, D., Hayat, T., Alsaedi, A.: Dynamics of a stochastic predator-prey model with stage structure for predator and Holling...
    • 16. Lu, S., Ge, W.: Existence of positive periodic solutions for neutral population model with multiple delays. Appl. Math. Comput. 153(3),...
    • 17. Meng, X., Zhao, S., Feng, T., Zhang, T.: Dynamics of a novel nonlinear stochastic sis epidemic model with double epidemic hypothesis....
    • 18. Slyusarchuk, V.Y.: Conditions for the existence of almost periodic solutions of nonlinear difference equations with discrete argument....
    • 19. Slyusarchuk, V.Y.: Periodic and almost periodic solutions of difference equations in metric spaces. J. Math. Sci. 8, 87–394 (2016)
    • 20. Slyusarchuk, V.Y.: Almost periodic solutions of differential equations. J. Math. Sci. 254, 287–304 (2021)
    • 21. Song, Y., Tang, X.: Stability, steady-state bifurcations, and turing patterns in a predator-prey model with herd behavior and prey-taxis....
    • 22. Song, Y., Wu, S., Wang, H.: Spatiotemporal dynamics in the single population model with memorybased diffusion and nonlocal effect. J....
    • 23. Wei, Z., Xia, Y., Zhang, T.: Stability and bifurcation analysis of an Amensalism model with weak Allee effect. Qual. Theory Dyn. Syst....
    • 24. Xia, Y., Cao, J.: Almost-periodic solutions for an ecological model with infinite delays. Proc. Edinb. Math. Soc. 50(1), 229–249 (2007)
    • 25. Xia, Y., Cao, J., Cheng, S.: Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional...
    • 26. Xu, C., Li, P.: The boy-after-girl dynamical model with time delay. Math. Practice Theory 45(22), 1–6 (2015)
    • 27. Xu, F., Cressman, R., Kˇrivan, V.: Evolution of mobility in predator-prey systems. Discrete Continu. Dyn. Syst. B 19(10), 3397 (2014)
    • 28. Ye, D., Fan, M., Zhang, W.: Periodic solutions of density dependent predator-prey systems with Holling type 2 functional response and...
    • 29. Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator– prey system. J. Differ. Equ. 246(5),...
    • 30. Yoshizawa, T.: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, vol. 14. Springer, Berlin (2012)
    • 31. Zhou, X., Ke, J.: The boy-after-girl mathematical model. Math. Practice Theory 42(12), 1–8 (2012)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno