Ir al contenido

Documat


Parameter calibration of stochastic volatility Heston’s model: Constrained optimization vs. differential evolution

  • Ambrosio Ortiz-Ramírez [1] ; Francisco Venegas-Martínez [1] ; María Teresa Verónica Martínez-Palacios [1]
    1. [1] Instituto Politécnico Nacional

      Instituto Politécnico Nacional

      México

  • Localización: Contaduría y administración, ISSN 0186-1042, ISSN-e 2448-8410, Vol. 67, Nº. 1, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper calibrates through loss functions the parameters of Heston’s stochastic volatility model by using two different methods: minimizing a nonlinear objective function (a loss function) with constraints on the values of the parameter and using a differential evolution algorithm. Both methods are applied to implied volatilities on the Mexican Stock Exchange Index with four maturities and twenty-eight strike prices. The selection criterion for the parameters is minimizing the value of the mean square error of the implied volatility. The first method has a better performance with less error and time. However, empirical results show that for both methods the adjustment of implied volatilities is better for options with longterm maturities than for short-term maturities.

  • Referencias bibliográficas
    • Bakshi, G., Cao, C. and Chen, Z. (1997). Empirical performance of alternative option pricing models. Journal of Finance, 52(5), 2003-2049....
    • Bams, D., Lehnert, T., and Wolff, C.C.P. (2009). Loss functions in option valuation: A framework for selection. Management Science, 55(5),...
    • Black, F., and Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3), 637-654. https://doi.org/10.1086/260062
    • Bradshaw, N.-A., Walshaw, C., Ierotheou, C. and Parrott, A. K. (2009). A multi-objective evolutionary algorithm for portfolio optimization....
    • Christoffersen, P., Heston, S., and Jacobs, K. (2009). The shape and term structure of the index option smirk: Why multifactor stochastic...
    • Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385-407. https://doi.org/10.2307/1911242
    • Cui, Y., del Baño Rollin S. and G. Germano (2017). Full and fast calibration of the Heston stochastic volatility model, European Journal...
    • Date, P. and S. Islyaev (2015). A fast calibrating volatility model for option pricing, European Journal of Operational Research, 243(2),...
    • Garman, M. (1976). A general theory of asset valuation under diffusion state processes. Working Paper, University of California, Berkeley,...
    • Gilli, M., and Schumann, E. (2011). Calibrating option pricing models with heuristics. In A. Brabazon, M. O’Neill, and D. Maringer (Eds.),...
    • Gulisashvili, A., and Stein, E. M. (2010). Asymptotic behavior of distribution densities in models with stochastic volatility. Mathematical...
    • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review...
    • Holland, J. H. (1975). Adaptation in natural and artificial systems. East Lansing, MI: University of Michigan Press.
    • Hull, J., and White, A. (1987). The pricing of options on assets with stochastic volatility. Journal of Finance, 42(2), 281-300. https://doi.org/10.1111/j.1540-6261.1987.tb02568.x
    • Latané, H. A., and Rendleman, Jr., R. J. (1976). Standard deviations of stock price ratios implied in option prices. Journal of Finance,...
    • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics. 2 (2),...
    • Liu, S., Borovykh, A., Grzelak, L.A. and Oosterlee, C. W. (2019). A neural network-based framework for financial model calibration. Journal...
    • Longstaff, F. (1989). A nonlinear general equilibrium model of the term structure of interest rates. Journal of Financial Economics, 23(2),...
    • Merton, C. R. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4(1), 141-183. https://doi.org/10.2307/3003143
    • Nelder, J.A. and R. Mead. (1965). A Simplex Method for Function Minimization, The Computer Journal, 7(4), 308-313. https://doi.org/10.1093/comjnl/7.4.308
    • Ortiz-Ramírez, A., F. Venegas-Martínez y F. López-Herrera (2011). Una nota sobre la sensibilidad de los parámetros del modelo de volatilidad...
    • Ortiz-Ramírez, A., F. Venegas-Martínez y M. Durán-Bustamante (2014). Valuación de opciones europeas sobre AMX-L, WALMEX-V y GMEXICO-B: calibración...
    • Palmer, S. (2019). Evolutionary algorithms and computational methods for derivatives pricing. Retrieved from https://core.ac.uk/download/pdf/196652947.pdf
    • Ponsich, A., López, A. J. and Coello, C. A. (2013). A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio...
    • Schöbel, R., and Zhu, J. W. (1999). Stochastic volatility with an Ornstein–Uhlenbeck process: An extension. European Finance Review, 3(1),...
    • Simon, D. (2013). Evolutionary optimization algorithms: Biologically-inspired and population-based approaches to computer intelligence. Hoboken,...
    • Soler-Domínguez, A., Juan, A. A., and Kizys, R. (2017). A Survey on Financial Applications of Metaheuristics. ACM Computing Surveys (CSUR),...
    • Stein, E. M., and Stein, J. C. (1991). Stock price distributions with stochastic volatility: An analytic approach. Review of Financial Studies,...
    • Storn, R., and Price, K. (1997). Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces....
    • Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of Brownian motion. Physical Review, 36: 823-841. https://link.aps.org/doi/10.1103/PhysRev.36.823
    • Venegas-Martínez, F. (2005). Maximización de utilidad y valuación de opciones con volatilidad estocástica. Revista Mexicana de Economía y...
    • Venegas-Martínez, F. (2008). Riesgos financieros y económicos, productos derivados y decisiones económicas bajo incertidumbre (2da. edición)....
    • Venegas-Martínez, F. (2010). Planes no creíbles de estabilización de precios, riesgo cambiario y opciones reales para posponer consumo: un...
    • Vollrath, I., and Wendland, J. (2009). Calibration of interest rate and option models using differential evolution. Working Paper, FINCAD...
    • Waller, L. A., Turnbull, B. W., and Hardin, J. M. (1995). Obtaining distribution functions by numerical inversion of characteristic functions...
    • Wiggins, J. B. (1987). Option values under stochastic volatility: Theory and empirical estimates. Journal of Financial Economics, 19(2),...
    • Zhu, J. (2010). Applications of Fourier transform to smile modeling: Theory and implementation (2nd edition). Berlin, Heidelberg: Springer-Verlag....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno