Ir al contenido

Documat


Representations of bornologies

  • Pajoohesh, Homeira [1]
    1. [1] Medgar Evers College

      Medgar Evers College

      Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 23, Nº. 1, 2022, págs. 17-30
  • Idioma: inglés
  • DOI: 10.4995/agt.2022.16405
  • Enlaces
  • Resumen
    • Bornologies abstract the properties of bounded sets of a metric space. But there are unbounded bornologies on a metric space like $\mathcal{P}(\RR)$ with the Euclidean metric. We show that by replacing $[0,\infty)$ with a partially ordered monoid every bornology is the set of bounded subsets of a generalized metric mapped into a partially ordered monoid. We also prove that the set of bornologies on a set is the join completion of the equivalence classes of a relation on the power set of the set.

  • Referencias bibliográficas
    • M. Abel and A. Šostak, Towards the theory of L-bornological spaces, Iran. J. Fuzzy Syst. 8, no. 1 (2011), 19-28.
    • B. Banaschewski, Hüllensysteme und Erweiterung von Quasi-Ordnungen, Z. Math. Logik Grundlagen Math. 2 (1956), 35-46.
    • https://doi.org/10.1002/malq.19560020803
    • G. Beer, On metric boundedness structures, Set-valued Anal 7 (1999), 195-208.
    • https://doi.org/10.1023/A:1008720619545
    • G. Beer and S. Levi, Total boundedness and bornologies, Topology and its Applications 156 (2009), 1271-1288.
    • https://doi.org/10.1016/j.topol.2008.12.030
    • G. Beer and S. Levi, Strong uniform continuity, J. Math. Anal. Appl. 350, no. 2 (2009), 568-589.
    • https://doi.org/10.1016/j.jmaa.2008.03.058
    • G. Birkhoff, Lattice Theory, 3rd Edition, American Math. Society Colloquium Publications, Volume 25, (1967), Providence, RI.
    • J. Cao and A. H. Tomita, Bornologies, topological games and function spaces, Topology Appl. 184 (2015), 16-28.
    • https://doi.org/10.1016/j.topol.2015.01.009
    • A. Chand and I. Weiss, Completion of continuity spaces with uniformly vanishing asymmetry, Topology Appl. 183 (2015), 130-140.
    • https://doi.org/10.1016/j.topol.2015.01.006
    • R. C. Flagg, Quantales and continuity spaces, Algebra Universalis 37 (1997), 257-276.
    • https://doi.org/10.1007/s000120050018
    • R. C. Flagg and R. Kopperman, Continuity spaces: Reconciling domains and metric spaces, Chic. J. Theoret. Comput. Sci. 77 (1977), 111-138.
    • https://doi.org/10.1016/S0304-3975(97)00236-3
    • H. Hogbe-Nlend, Bornologies and functional analysis, North-Holland, Amsterdam-New York-Oxford, 1977.
    • S. T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 228 (1949), 287-320.
    • J. L. Kelley, General Topology, D. van Nostrand, 1955.
    • R. Kopperman, All topologies come from generalized metrics, Am. Math. Monthly 95 (1988), 89-97.
    • https://doi.org/10.1080/00029890.1988.11971974
    • R. Kopperman, S. Matthews and H. Pajoohesh, Partial metrizability in value quantales, Applied General Topology 5, no. 1 (2004), 115-127.
    • https://doi.org/10.4995/agt.2004.2000
    • R. Kopperman and H. Pajoohesh, Representing topologies using partially ordered semigroups, Topology and its applications 249 (2018), 135-149.
    • https://doi.org/10.1016/j.topol.2018.08.014
    • R. Kopperman, H. Pajoohesh and T. Richmond, Topologies arising from metrics valued in abelian l-groups, Algebra Universalis 65 (2011), 315-330.
    • https://doi.org/10.1007/s00012-011-0132-5
    • J. P. Lasalle, Topology based upon the concept of pseudo-norm, Proc. Nat. Acad. Sci. 27 (1941), 448-451.
    • https://doi.org/10.1073/pnas.27.9.448
    • S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on Topology and its Applications, ed S. Andima et al., New York Academy...
    • https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
    • H. Pajoohesh, k-metric spaces, Algebra Universalis 69, no. 1 (2013), 27-43.
    • https://doi.org/10.1007/s00012-012-0218-8
    • J. Schmidt, Universal and internal properties of some completions of k-join-semilattices and k-join-distributive partially ordered sets, J....
    • https://doi.org/10.1515/crll.1972.255.8
    • J. Schmidt, Each join-completion of a partially ordered set is the solution of a universal problem, J. Austral. Math. Soc. 17 (1974), 406-413.
    • https://doi.org/10.1017/S1446788700018048

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno