Ir al contenido

Documat


Topological transitivity of the normalized maps induced by linear operators

  • Mandal, Pabitra Narayan [1]
    1. [1] University of Hyderabad

      University of Hyderabad

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 23, Nº. 1, 2022, págs. 135-143
  • Idioma: inglés
  • DOI: 10.4995/agt.2022.15613
  • Enlaces
  • Resumen
    • In this article, we provide a simple geometric proof of the following fact: The existence of transitive normalized maps induced by linear operators is possible only when the underlying space's real dimension is either 1 or 2 or infinity. A similar result holds for projective transformation as well.

  • Referencias bibliográficas
    • J. M. Aarts and F. G. M. Daalderop, Chaotic homeomorphisms on manifolds, Topology and its Applications 96 (1999), 93-96.
    • https://doi.org/10.1016/S0166-8641(98)00041-8
    • F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University Press (2009), Cambridge.
    • https://doi.org/10.1017/CBO9780511581113
    • L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag (1992), Berlin.
    • https://doi.org/10.1007/BFb0084762
    • S. G. Dani, Dynamical properties of linear and projective transformation and their applications, Indian Journal of Pure and Applied Mathematics...
    • M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, CMS Books in...
    • https://doi.org/10.1007/978-1-4419-7515-7
    • K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer (2011), London.
    • https://doi.org/10.1007/978-1-4471-2170-1
    • G. Herzog, On linear operators having supercyclic vectors, Studia Mathematica 103 (1992), 295-298.
    • https://doi.org/10.4064/sm-103-3-295-298
    • N. H. Kuiper, Topological conjugacy of real projective transformation, Topology 15 (1976), 13-22.
    • https://doi.org/10.1016/0040-9383(76)90046-X
    • R. Shah, A. Nagar and S. Shridharan (Ed. by), Elements of Dynamical Systems, Hindusthan Publishers (2020), Delhi.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno