Ir al contenido

Documat


Topological Krasner hyperrings with special emphasis on isomorphism theorems

  • Singha, Manooranjan [1] ; Das, Kousik [1]
    1. [1] Department of Mathematics, University of North Bengal, INDIA
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 23, Nº. 1, 2022, págs. 201-212
  • Idioma: inglés
  • DOI: 10.4995/agt.2022.14778
  • Enlaces
  • Resumen
    • Krasner hyperring is one of the generalizations of the classical ring in literature. In this paper, the notion of topological Krasner hyperring is introduced as a generalization of topological ring and variant of isomorphism theorems are studied

  • Referencias bibliográficas
    • M. Al Tahan and B. Davvaz, Electrochemical cells as experimental verifications of n-ary hyperstructures, Matematika 35, no. 1 (2019), 13-24.
    • https://doi.org/10.11113/matematika.v35.n1.1062
    • R. Ameri, M. Eyvazi and S. Hoskova-Mayerova, Superring of polynomials over a hyperring, Mathematics 7, no 10 (2019): 902.
    • https://doi.org/10.3390/math7100902
    • R. Ameri, A. Kordi and S. Hoskova-Mayerova, Multiplicative hyperring of fractions and coprime hyperideals, An. Sţ. Univ. Ovidius Constanţa...
    • https://doi.org/10.1515/auom-2017-0001
    • L. Berardi, F. Eugeni and S. Innamorati, Generalized designs, Linear spaces, Hypergroupoids and Algebraic Crypotography, IV Congress on AHA,...
    • C. Berge, Graphes et Hypergraphes, Dunod, Paris, 1970.
    • H. Bordbar, I. Cristea and M. Novak, Height of hyperideals in Noetherian Krasner hyperrings, UPB Scientific Bulletin, Series A: Appl. Math....
    • https://doi.org/10.2298/FIL1719153B
    • B. Davvaz, Isomorphism theorems of hyperring, Indian J. Pure Appl. Math. 35, no. 3 (2004), 321-331.
    • B. Davvaz, A. Dehghan Nezhad and S. M. Moosavi Nejad, Algebraic hyperstructure of observable elementary particles including the Higgs boson,...
    • https://doi.org/10.1007/s40010-018-0553-z
    • B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, 115, Palm Harber, USA, 2007.
    • B. Davvaz and T. Musavi, Codes over hyperrings, Matematicki Vesnik 68, no. 1 (2016), 26-38.
    • D. Heidari, B. Davvaz and S. M. S. Modarres, Topological polygroups, Bull. Malays. Math. Sci. Soc. 39 (2016), 707-721.
    • https://doi.org/10.1007/s40840-015-0136-y
    • D. Heidari, D. Mazaheri and B. Davvaz, Chemical salt reactions as algebraic hyperstructures, Iranian J. Math. Chem. 10, no. 2 (2019), 93-102.
    • S. Hoskova-Mayerova, Topological hypergroupoids, Comput. Math. Appl. 64, no. 9 (2012), 2845-2849.
    • https://doi.org/10.1016/j.camwa.2012.04.017
    • A. Kehagias and M. Konstantinidou, Lattice ordered join space: an applications-oriented example, Italian J. Pure Appl. Math. (2000).
    • M. Konstantinidou, On the hyperlattices-ordered groupoids, Boll. Un. Mat. Ital. A (6) 2, no. 3 (1983), 343-350.
    • M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. and Math. Sci. 6 (1983), 307-312.
    • https://doi.org/10.1155/S0161171283000265
    • G. Ligozat, Weak representations of Interval Algebras, AAAI-90, Boston, 1990.
    • C. G. Massouros, On the theory of hyperrings and hyperfields, Algebra and Logic 24 (1985), 728-742.
    • https://doi.org/10.1007/BF01978850
    • G. G. Massouros, Hypercompositional structures in the theory of the languages and automata, Analele Ştiinţifice ale Universităţii ''Al....
    • A. Maturo, On a non-standard algebraic hyperstructure and its application to the coherent probability assessments, Italian J. Pure Appl. Math....
    • A. Mehrpooya, M. Ebrahimi and B. Davvaz, Two dissimilar approaches to dynamical systems on hyper MV-algebras and their information entropy,...
    • https://doi.org/10.1140/epjp/i2017-11656-8
    • J. R. Munkres, Topology, 2nd Edition. Prentice Hall, 2000.
    • M. Norouzi and I. Cristea, Fundamental relation on m-idempotent hyperrings, Open Mathematics 15 (2017), 1558-1567.
    • https://doi.org/10.1515/math-2017-0128
    • W. Phanthawimol, Y. Punkla, K. Kwakpatoon and Y. Kemprasit, On homomorphisms of Krasner hyperrings, An. Stiint. Univ. Al. I. Cuza Iasi. Mat.(S.N.)...
    • https://doi.org/10.2478/v10157-011-0023-2
    • W. Prenowitz, Projective geometries as multigroups, Amer. J. Math. 65 (1943), 235-256.
    • https://doi.org/10.2307/2371812
    • W. Prenowitz, Descriptive geometries as multigroups, Trans. Amer. Math. Soc. 59 (1946), 333-380.
    • https://doi.org/10.1090/S0002-9947-1946-0015126-6
    • I. G. Rosenberg, Hypergroups induced by paths of a directed graph, Italian J. Pure Appl. Math. 4 (1998), 133-142.
    • M. S. Shadkami, M. R. Ahmadi Zand and B. Davvaz, The role of complete parts in topological polygroups, Int. J. Anal. Appl. 11 (2016), 54-60.
    • S. Spartalis, (H,R)-hyperring, Algebraic hyperstructutres and applications (Xanthi, 1990), World Sci. Publ., Teaneck, NJ, (1991), 187-195.
    • D. Stratigopoulos, Homomorphisms and Boolean hyperrings, Italian J. Pure Appl. Math. 17 (2005), 9-20.
    • G. Tallini, On Steiner hypergroups and Linear codes, Convegno Ipergruppi, Altre Strutture multivoche e loro applicazioni, Udine, 1985, 87-91.
    • V. Vahedi, M. Jafarpour, S. Hoskova-Mayerova, H. Aghabozorgi, V. Leoreanu-Fotea and S. Bekesiene, Derived hyperstructures from hyperconics,...
    • https://doi.org/10.3390/math8030429
    • S. Warner, Topological Rings, North-Holland, 1993.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno