Ir al contenido

Documat


Compact differences of weighted composition operators

  • Autores: Bin Liu, Jouni Rättyä Árbol académico
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 1, 2022, págs. 89-105
  • Idioma: inglés
  • DOI: 10.1007/s13348-020-00309-y
  • Enlaces
  • Resumen
    • Compact differences of two weighted composition operators acting from the weighted Bergman space Apω to another weighted Bergman space Aqν, where 0

  • Referencias bibliográficas
    • Acharyya, S., Wu, Z.: Compact and Hilbert–Schmidt differences of weighted composition operators. Int. Equ. Operator Theory 88, 465–482 (2017)
    • Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions. J. Aust....
    • Choe, B.R., Choi, K., Koo, H., Yang, J.: Difference of weighted composition operators. J. Funct. Anal. 278, 108401 (2020). 38 pp
    • Contreras, M.D., Hernández-Díaz, A.G.: Weighted composition operators on Hardy spaces. J. Math. Anal. Appl. 263, 224–233 (2001)
    • Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton,...
    • Čučković, Z., Zhao, R.: Weighted composition operators between different weighted Bergman spaces and different Hardy spaces. Illinois J. Math....
    • Čučković, Z., Zhao, R.: Weighted composition operators on the Bergman space. J. London Math. Soc. 2(70), 499–511 (2004)
    • Goebeler Jr., T.E.: Composition operators acting between Hardy spaces. Int. Equ. Operator Theory 41, 389–395 (2001)
    • Halmos, P.R.: Measure Theory. Springer-Verlag, New York (1974)
    • Hosokawa, T., Ohno, S.: Differences of composition operators on the Bloch spaces. J. Operator Theory 57, 229–242 (2007)
    • Moorhouse, J.: Compact differences of composition operators. J. Funct. Anal. 219, 70–92 (2005)
    • Moorhouse, J., Toews, C.: Differences of composition operators. Trends in Banach spaces and operator theory (Memphis, TN, 2001), 207–213,...
    • Peláez, J.A., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Mem. Am. Math. Soc. 227, vi+124 (2014)
    • Peláez, J.A., Rättyä, J.: Bergman projection induced by radial weight. preprint (2019). arXiv:1902.09837
    • Peláez, J.A., Rättyä, J.: Embedding theorems for Bergman spaces via harmonic analysis. Math. Ann. 362, 205–239 (2015)
    • Peláez, J.A., Rättyä, J.: Trace class criteria for Toeplitz and composition operators on small Bergman spaces. Adv. Math. 293, 606–643 (2016)
    • Peláez, J.A.: Small weighted Bergman spaces. Proceedings of the Summer School in Complex and Harmonic Analysis, and Related Topics, 29–98,...
    • Peláez, J.A., Rättyä, J., Sierra, K.: Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights. J. Geom. Anal....
    • Peláez, J.A., Perälä, A., Rättyä, J.: Hankel operators induced by radial Bekollé - Bonami weights on Bergman spaces. Math. Z. (2019). https://doi-org.sire.ub.edu/10.1007/s00209-019-02412-8
    • Saukko, E.: Difference of composition operators between standard weighted Bergman spaces. J. Math. Anal. Appl. 381, 789–798 (2011)
    • Saukko, E.: An application of atomic decomposition in Bergman spaces to the study of differences of composition operators. J. Funct. Anal....
    • Shapiro, J.H.: The essential norm of a composition operator. Ann. of Math. 2(125), 375–404 (1987)
    • Shapiro, J.H.: Composition operators and classical function theory. Universitext: Tracts in Mathematics. Springer-Verlag, New York, xvi+223...
    • Shapiro, J.H., Sundberg, C.: Isolation amongst the composition operators. Pacific J. Math. 145, 117–152 (1990)
    • Smith, W.: Composition operators between Bergman and Hardy spaces. Trans. Am. Math. Soc. 348, 2331–2348 (1996)
    • Smith, W., Yang, L.: Composition operators that improve integrability on weighted Bergman spaces. Proc. Am. Math. Soc. 126, 411–420 (1998)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno