Ir al contenido

Documat


Bounds for discrete multilinear spherical maximal functions

  • Anderson, Theresa C. [1] ; Palsson, Eyvindur Ari [2]
    1. [1] Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN, 47907, USA
    2. [2] Department of Mathematics, Virginia Tech, 225 Stanger St., Blacksburg, VA, 24061, USA
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 1, 2022, págs. 75-87
  • Idioma: inglés
  • DOI: 10.1007/s13348-020-00308-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We define a discrete version of the bilinear spherical maximal function, and show bilinear lp(Zd)×lq(Zd)→lr(Zd) bounds for d≥3, 1p+1q≥1r, r>dd−2 and p,q≥1. Due to interpolation, the key estimate is an lp(Zd)×l∞(Zd)→lp(Zd) bound, which holds when d≥3, p>dd−2. A key feature of our argument is the use of the circle method which allows us to decouple the dimension from the number of functions compared to the work of Cook.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno