Ir al contenido

Documat


Fractional Paley–Wiener and Bernstein spaces

  • Monguzzi, Alessandro [1] ; Peloso, Marco M. [2] Árbol académico ; Salvatori, Maura [2]
    1. [1] University of Milano-Bicocca

      University of Milano-Bicocca

      Milán, Italia

    2. [2] University of Milan

      University of Milan

      Milán, Italia

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 72, Fasc. 3, 2021, págs. 615-643
  • Idioma: inglés
  • DOI: 10.1007/s13348-020-00303-4
  • Enlaces
  • Resumen
    • We introduce and study a family of spaces of entire functions in one variable that generalise the classical Paley–Wiener and Bernstein spaces. Namely, we consider entire functions of exponential type a whose restriction to the real line belongs to the homogeneous Sobolev space \dot{W}^{s,p} and we call these spaces fractional Paley–Wiener if p=2 and fractional Bernstein spaces if p\in (1,\infty ), that we denote by PW^s_a and {\mathcal {B}}^{s,p}_a, respectively. For these spaces we provide a Paley–Wiener type characterization, we remark some facts about the sampling problem in the Hilbert setting and prove generalizations of the classical Bernstein and Plancherel–Pólya inequalities. We conclude by discussing a number of open questions.

  • Referencias bibliográficas
    • Abakumov, E., Baranov, A., Belov, Y.: Krein-type theorems and ordered structure for Cauchy–de Branges spaces. J. Funct. Anal. 277(1), 200–226...
    • Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)
    • Arcozzi, N., Monguzzi, A., Peloso, M.M., Salvatori, M.: Paley–Wiener theorems on the Siegel upper half-space. J. Fourier Anal. Appl. 25(4),...
    • Andersen, N.B.: Entire L^p-functions of exponential type. Expo. Math. 32(3), 199–220 (2014)
    • Baranov, A., Belov, Y., Borichev, A.: Spectral synthesis in de Branges spaces. Geom. Funct. Anal. 25(2), 417–452 (2015)
    • Baranov, A., Belov, Y., Borichev, A.: Fock type spaces with Riesz bases of reproducing kernels and de Branges spaces. Stud. Math. 236(2),...
    • Baranov, A., Bommier-Hato, H.: De Branges spaces and Fock spaces. Complex Var. Elliptic Equ. 63(7–8), 907–930 (2018)
    • Baranov, A., Belov, Y., Poltoratski, A.: De Branges functions of Schroedinger equations. Collect. Math. 68(2), 251–263 (2017)
    • Bernstein, S.N.: Sur une propriete des fonctions entières. C. R. Acad. Sci. 176, 1603–1605 (1923)
    • Bourdaud, G.: Réalisations des espaces de Besov homogènes. Ark. Math. 26(1), 41–54 (1988)
    • Bourdaud, G.: Realizations of homogeneous Sobolev spaces. Complex Var. Elliptic Equ. 56(10–11), 857–874 (2011)
    • Bourdaud, G.: Realizations of homogeneous Besov and Lizorkin–Triebel spaces. Math. Nachr. 286(5–6), 476–491 (2013)
    • de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall Inc, Englewood Cliffs (1968)
    • Gabardo, J.-P., Lai, C.-K.: Frames of multi-windowed exponentials on subsets of \mathbb{R}^d. Appl. Comput. Harmon. Anal. 36(3), 461–472 (2014)
    • Grafakos, L.: Modern Fourier analysis, Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2014)
    • Lai, C.-K.: On Fourier frame of absolutely continuous measures. J. Funct. Anal. 261(10), 2877–2889 (2011)
    • Monguzzi, A., Peloso, M.M., Salvatori, M.: Spaces of entire functions in {\mathbb{C}}^{n+1} (in preparation) (2020)
    • Monguzzi, A., Peloso, M.M., Salvatori, M.: Fractional Laplacian, homogeneous Sobolev spaces and their realizations. Ann. Mat. Pura Appl. (4)...
    • Ortega-Cerdà, J., Seip, K.: Fourier frames. Ann. Math. (2) 155(3), 789–806 (2002)
    • Pesenson, I.: Sampling of band-limited vectors. J. Fourier Anal. Appl. 7(1), 93–100 (2001)
    • Paley, R.E.A.C., Wiener, N.: Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American...
    • Pesenson, I., Zayed, A.I.: Paley–Wiener subspace of vectors in a Hilbert space with applications to integral transforms. J. Math. Anal. Appl....
    • Romanov, R.: Canonical systems and de Branges spaces, arXiv e-prints (2014), arXiv:1408.6022
    • Seip, K.: Interpolation and sampling in spaces of analytic functions, University Lecture Series, vol. 33. American Mathematical Society, Providence,...
    • Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton...
    • Young, R.M.: An Introduction to Nonharmonic Fourier Series, 1st edn. Academic Press Inc, San Diego, CA (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno