Ir al contenido

Documat


Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis

  • Boiti, Chiara [3] ; Jornet, David [1] Árbol académico ; Oliaro, Alessandro [4] Árbol académico ; Schindl, Gerhard [2]
    1. [1] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

    2. [2] University of Vienna

      University of Vienna

      Innere Stadt, Austria

    3. [3] Dipartimento di Matematica e Informatica, Università di Ferrara, Via Machiavelli n. 30, 44121, Ferrara, Italy
    4. [4] Dipartimento di Matematica, Università di Torino, Via Carlo Alberto n. 10, 10123, Torino, Italy
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 72, Fasc. 2, 2021, págs. 423-442
  • Idioma: inglés
  • DOI: 10.1007/s13348-020-00296-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We use techniques from time-frequency analysis to show that the space {\mathcal{S}}_\omega of rapidly decreasing \omega-ultradifferentiable functions is nuclear for every weight function \omega (t)=o(t) as t tends to infinity. Moreover, we prove that, for a sequence (M_p)_p satisfying the classical condition (M1) of Komatsu, the space of Beurling type {\mathcal{S}}_{(M_p)} when defined with L^{2} norms is nuclear exactly when condition (M2)' of Komatsu holds.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno