Ir al contenido

Documat


Existence of variational solutions to a Cauchy–Dirichlet problem with time-dependent boundary data on metric measure spaces

  • Collins, Michael [1]
    1. [1] Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, 91058, Erlangen, Germany
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 72, Fasc. 2, 2021, págs. 281-306
  • Idioma: inglés
  • DOI: 10.1007/s13348-020-00288-0
  • Enlaces
  • Resumen
    • The objective of this work is an existence proof for variational solutions u to parabolic minimizing problems. Here, the functions being considered are defined on a metric measure space ({\mathcal {X}}, d, \mu ). For such parabolic minimizers that coincide with Cauchy-Dirichlet data \eta on the parabolic boundary of a space-time-cylinder \varOmega \times (0, T) with an open subset \varOmega \subset {\mathcal {X}} and T > 0, we prove existence in the parabolic Newtonian space L^p(0, T; {\mathcal {N}}^{1,p}(\varOmega )). In this paper we generalize results from Collins and Herán (Nonlinear Anal 176:56–83, 2018) where only time-independent Cauchy–Dirichlet data have been considered. We argue completely on a variational level.

  • Referencias bibliográficas
    • Ambrosio, L.: Minimizing movements. R. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19, 191–246 (1995)
    • Björn, J.: Poincaré inequalities for powers and products of admissible weights. Ann. Acad. Sci. Fenn. Math. 26, 175–188 (2002)
    • Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics. European Mathematical Society, Zurich (2011)
    • Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet problem for -harmonic functions on metric spaces. J. Reine Angew. Math. 556, 173–203...
    • Björn, J., Shanmugalingam, N.: Poincaré inequalities, uniform domains and extension properties for Newton–Sobolev functions in metric spaces....
    • Bögelein, V., Duzaar, F., Marcellini, P.: Parabolic systems with p, q-growth: a variational approach. Arch. Ration. Mech. Anal. (1) 210, 219–267...
    • Bögelein, V., Duzaar, F., Scheven, C.: The obstacle problem for parabolic minimizers. J. Evol. Equ. (4) 17, 1273–1310 (2017)
    • Bögelein, V., Lukkari, T., Scheven, C.: The obstacle problem for the porous medium equation. Math. Ann. (1) 363, 455–499 (2015)
    • Bögelein, V., Scheven, C.: Higher integrability in parabolic obstacle problems. Forum Math. (5) 24, 931–972 (2012)
    • Cheeger, J.: Differentialbility of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)
    • Choe, H.J.: Interior behavior of minimizers for certain functionals with non standard growth. Nonlinear Anal. 19, 933–945 (1992)
    • Cianchi, A., Fusco, N.: Gradient regularity for minimizers under general growth conditions. J. Reine Angew. Mat. 507, 15–36 (1999)
    • Collins, M., Herán, A.: Existence of parabolic minimizers on metric measure spaces. Nonlinear Anal. 176, 56–83 (2018)
    • Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, New York (2008)
    • De Giorgi, E.: New Problems on Minimizing Movements. Boundary Value Problems for Partial Differential Equations and Applications. RMA Res....
    • Diestel, J., Uhl, J.J.: Vector Measures, Mathematical Surveys, vol. 15. American Mathematical Society, Providence (1977). (With a foreword...
    • Esposito, L., Leonetti, F., Mingione, G.: Regularity for minimizers of functionals with p-q growth. Nonlinear Equ. Appl. 6, 133–148 (1999)
    • Franchi, P., Hajlaz, P., Koskela, P.: Definitions on Sobolev classes in metric spaces. Ann. l’inst. Fourier (Grenoble) 49, 1903–1924 (1999)
    • Fujishima, Y., Habermann, J.: Global higher integrability for parabolic quasiminimizers in metric spaces. Adv. Cal. Var. (3) 10, 267–301 (2017)
    • Fujishima, Y., Habermann, J.: The stability problem for parabolic quasiminimizers in metric measure spaces. Rendiconti Lincei-Matematica E...
    • Fujishima, Y., Habermann, J., Kinnunen, J., Masson, M.: Stability for parabolic quasiminimizers. Potential Anal. 41, 983–1004 (2014)
    • Fusco, N., Sbordone, C.: Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions. Commun. Pure...
    • Grigor’yan, A.A.: The heat equation on noncompact Riemannian manifolds. Mat. Sb. 182, 55–87 (1992). (Translation in Math. USSR-Sb. 72, 47...
    • Habermann, J.: Higher integrability for vector-valued parabolic quasi-minimizers on metric measure spaces. Ark. Mat. (1) 54, 85–123 (2016)
    • Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)
    • Hajłasz, P.: Sobolev spaces on metric measure spaces. Heat kernels and analysis on manifolds, graphs and metric spaces. Contemp. Math. 338,...
    • Hajłasz, P., Koskela, P.: Sobolev meets Poincaré. C. R. Acad. Sci. Paris Ser. I Math. 320, 1211–1215 (1995)
    • Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145, x + 101 (2000)
    • Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)
    • Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)
    • Heinonen, J., Koskela, P.: A note on Lipschitz functions, upper gradients, and the Poincaré inequality. N. Zeal. J. Math. 28, 37–42 (1999)
    • Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients, New...
    • Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. (2) 167, 575–599 (2008)
    • Kilpeläinen, T., Kinnunen, J., Martio, O.: Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12, 233–247 (2000)
    • Kinnunen, J., Marola, N., Miranda Jr., M., Paronetto, F.: Harnack’s inequality for parabolic De Giorgi classes in metric spaces. Adv. Differ....
    • Kinnunen, J., Martio, O.: The Sobolev capacity on metric spaces. Ann. Acad. Sci. Fenn. Math. 21, 367–382 (1996)
    • Kinnunen, J., Shanmugalingam, N.: Regularity of quasi-minimizers on metric spaces. Manuscr. Math. 105, 401–423 (2001)
    • Koskela, P., Shanmugalingam, N., Tuominen, H.: Removable sets for the Poincaré inequality on metric spaces. Indiana Univ. Math. J. 49, 333–352...
    • Kronz, M.: Some function spaces and spaces of homogeneous type. Manuscr. Math. 106, 219–248 (2001)
    • Laakso, T.: Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality. Geom. Funct. Anal. 10, 111–123 (2000)
    • Landes, R.: On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc. R. Soc. Edinb. Sect. A (3...
    • Lichnewsky, A., Temam, R.: Pseudosolutions of the time-dependent minimal surface problem. J. Differ. Equ. (3) 30, 340–364 (1978)
    • Maasalo, O.E., Zatorska-Goldstein, A.: Stability of quasiminimizers of the p-Dirichlet integral with varying p on metric spaces. J. Lond....
    • Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23,...
    • Marcellini, P., Papi, G.: Nonlinear elliptic systems with general growth. J. Differ. Equ. 221, 412–443 (2006)
    • Marola, N., Masson, M.: On the Harnack inequality for parabolic minimizers in metric measure spaces. Tohoku Math. J. (2) 65, 569–589 (2013)
    • Masson, M., Miranda Jr., M., Paronetto, F., Parviainen, M.: Local higher integrability for parabolic quasiminimizers in metric spaces. Ric....
    • Masson, M., Siljander, J.: Hölder regularity for parabolic De Giorgi classes in metric measure spaces. Manuscr. Math. (1) 142, 187–214 (2013)
    • Perlman, M.D.: Jensen’s inequality for a convex vector-valued function on an infinite-dimensional space. J. Multivar. Anal. 4, 52–65 (1974)
    • R\mathring{u}žička, M.: Nichtlineare Funktionalanalysis: Eine Einführung, Springer Lehrbuch Masterclass. Springer, Berlin (2004)
    • Saloff-Coste, L.: A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Not. IMRN 2, 27–38 (1992)
    • Saloff-Coste, L.: Aspects of Sobolev-Type Inequalites, London Mathematical Society Lecture Note Series 289. Cambridge University Press, Cambridge...
    • Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16(2), 243–279 (2000)
    • Shanmugalingam, N.: Harmonic functions on metric spaces. Ill. J. Math. 45, 1021–1050 (2001)
    • Uhlenbeck, K.: Regularity for a class of nonlinear elliptic systems. Acta Math. 138, 219–240 (1977)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno