Ir al contenido

Documat


Noetherian operators, primary submodules and symbolic powers

  • Autores: Yairon Cid Ruiz
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 72, Fasc. 1, 2021, págs. 175-202
  • Idioma: inglés
  • DOI: 10.1007/s13348-020-00285-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give an algebraic and self-contained proof of the existence of the so-called Noetherian operators for primary submodules over general classes of Noetherian commutative rings. The existence of Noetherian operators accounts to provide an equivalent description of primary submodules in terms of differential operators. As a consequence, we introduce a new notion of differential powers which coincides with symbolic powers in many interesting non-smooth settings, and so it could serve as a generalization of the Zariski–Nagata Theorem.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno