Any {\mathcal {S}} \in \mathfrak {sp}(1,{\mathbb {R}}) induces canonically a derivation S of the Heisenberg Lie algebra {\mathfrak {h}} and so, a semi-direct extension G_{{\mathcal {S}}}=H \rtimes \exp ({\mathbb {R}}S) of the Heisenberg Lie group H (Müller and Ricci in Invent Math 101: 545–582, 1990). We shall explicitly describe the connected, simply connected Lie group G_{{\mathcal {S}}} and a family g_a of left-invariant (Lorentzian and Riemannian) metrics on G_{{\mathcal {S}}}, which generalize the case of the oscillator group. Both the Lie algebra and the analytic description will be used to investigate the geometry of (G_{{\mathcal {S}}},g_a), with particular regard to the study of nontrivial Ricci solitons.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados