Ir al contenido

Documat


Direct versus iterative methods for forward-backward diffusion equations. Numerical comparisons

  • Óscar López Pouso [1] ; Nizomjon Jumaniyazov [2]
    1. [1] Universidade de Santiago de Compostela

      Universidade de Santiago de Compostela

      Santiago de Compostela, España

    2. [2] Tashkent University of Information Technologies named after Muhammad al-Khwarizmi
  • Localización: SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, ISSN-e 2254-3902, ISSN 2254-3902, Vol. 78, Nº. 3, 2021, págs. 271-286
  • Idioma: inglés
  • DOI: 10.1007/s40324-020-00236-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • By far, the standard implementation of finite difference schemes for forward–backward partial differential equations consists in employing an iterative method. This paper collects a series of numerical results which demonstrate that a direct implementation can reduce the computing time. An effective way of choosing the seed for the iterative method naturally arises.

  • Referencias bibliográficas
    • Aziz, A.K., French, D.A., Jensen, S., Kellogg, R.B.: Origins, analysis, numerical analysis, and numerical approximation of a forward-backward...
    • Beals, R.: On an equation of mixed type from electron scattering theory. J. Math. Anal. Appl. 58, 32–45 (1977) DOI: 10.1016/0022-247X(77)90225-6
    • Beals, R.: Indefinite Sturm-Liouville problems and half-range completeness. J. Differ. Equ. 56, 391–407 (1985) DOI: 10.1016/0022-0396(85)90085-3
    • Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006) DOI: 10.1137/1.9780898718881
    • Degond, P., Mas-Gallic, S.: Existence of solutions and diffusion approximation for a model Fokker-Planck equation. Transport Theory Stat Phys...
    • Fisch, N.J., Kruskal, M.D.: Separating variables in two-way diffusion equations. J. Math. Phys. 21, 740–750 (1980) DOI: 10.1063/1.524495
    • Franklin, J.N., Rodemich, E.R.: Numerical analysis of an elliptic-parabolic partial differential equation. SIAM J. Numer. Anal. 5(4), 680–716...
    • Han, H., Yin, D.: A non-overlap domain decomposition method for the forward-backward heat equation. J. Comput. Appl. Math. 159(1), 35–44 (2003)...
    • Kim, A.D., Tranquilli, P.: Numerical solution of the Fokker-Planck equation with variable coefficients. J. Quant. Spectrosc. Radiat. Transf....
    • Klaus, M., van der Mee, C.V.M., Protopopescu, V.: Half-range solutions of indefinite Sturm-Liouville problems. J. Funct. Anal. 70, 254–288...
    • López Pouso, Ó., Jumaniyazov, N.: Numerical experiments with the Fokker-Planck equation in 1D slab geometry. J. Comput. Theor. Transport 45(3),...
    • Sheng, Q., Han, W.: Well-posedness of the Fokker-Planck equation in a scattering process. J. Math. Anal. Appl. 406, 531–536 (2013) DOI: 10.1016/j.jmaa.2013.04.063
    • Stein, D., Bernstein, I.B.: Boundary value problem involving a simple Fokker-Planck equation. Phys. Fluids 19, 811–814 (1976) DOI: 10.1063/1.861546
    • Sun, J.: Numerical schemes for the forward-backward heat equation. Int. J. Comput. Math. 87(3), 552–564 (2010) DOI: 10.1080/00207160802140031
    • Vanaja, V.: Numerical solution of a simple Fokker-Planck equation. Appl. Numer. Math. 9(6), 533–540 (1992) DOI: 10.1016/0168-9274(92)90006-Y
    • Vanaja, V., Kellogg, R.B.: Iterative methods for a forward-backward heat equation. SIAM J. Numer. Anal. 27(3), 622–635 (1990) DOI: 10.1137/0727038

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno