Ir al contenido

Documat


Caterpillars are Antimagic

  • Autores: Antoni Lozano Bojados Árbol académico, Merce Mora Giner Árbol académico, Carlos Seara, Joaquín Tey
  • Localización: Mediterranean journal of mathematics, ISSN 1660-5446, Vol. 18, Nº. 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s00009-020-01688-z
  • Enlaces
  • Resumen
    • An antimagic labeling of a graph G is a bijection from the set of edges E(G) to {1,2,…,|E(G)|}, such that all vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of the labels assigned to the edges incident to u. A graph is called antimagic when it has an antimagic labeling. Hartsfield and Ringel conjectured that every simple connected graph other than K2 is antimagic and the conjecture remains open even for trees. Here, we prove that caterpillars are antimagic by means of an O(nlogn) algorithm.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno