Ir al contenido

Documat


Bohr-Type Inequalities for Harmonic Mappings with a Multiple Zero at the Origin

  • Autores: Yong Huang, Ming Sheng Liu, Saminathan Ponnusamy
  • Localización: Mediterranean journal of mathematics, ISSN 1660-5446, Vol. 18, Nº. 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s00009-021-01726-4
  • Enlaces
  • Resumen
    • In this paper, we first determine Bohr’s inequality for the class of harmonic mappings f=h+g¯¯¯ in the unit disk D, where either both h(z)=∑∞n=0apn+mzpn+m and g(z)=∑∞n=0bpn+mzpn+m are analytic and bounded in D, or satisfies the condition |g′(z)|≤d|h′(z)| in D∖{0} for some d∈[0,1] and h is bounded. In particular, we obtain Bohr’s inequality for the class of harmonic p-symmetric mappings. Also, we investigate the Bohr-type inequalities of harmonic mappings with a multiple zero at the origin and that most of results are proved to be sharp.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno