Ir al contenido

Documat


Commensurability in Artin groups of spherical type

  • María Cumplido [1] ; Luis Paris [2]
    1. [1] Universidad de Sevilla

      Universidad de Sevilla

      Sevilla, España

    2. [2] University of Burgundy

      University of Burgundy

      Arrondissement de Dijon, Francia

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 38, Nº 2, 2022, págs. 503-526
  • Idioma: inglés
  • DOI: 10.4171/RMI/1282
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give an almost complete classification of Artin groups of spherical type up to commensurability. Let A and A′ be two Artin groups of spherical type, and let A1,…,Ap (respectively, A′1,…,A′q) be the irreducible components of A (respectively, A′). We show that A and A′ are commensurable if and only if p=q and, up to permutation of the indices, Ai and A′i are commensurable for every i. We prove that, if two Artin groups of spherical type are commensurable, then they have the same rank. For a fixed n, we give a complete classification of the irreducible Artin groups of rank n that are commensurable with the group of type An. Note that there are six remaining comparisons of pairs of groups to get the complete classification of Artin groups of spherical type up to commensurability, two of which have been done by Ignat Soroko after the first version of the present paper.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno