Ir al contenido

Documat


Classification of finite Morse index solutions to the elliptic sine-Gordon equation in the plane

  • Yong Liu [1] ; Juncheng Wei [2]
    1. [1] University of Science and Technology of China

      University of Science and Technology of China

      China

    2. [2] University of British Columbia

      University of British Columbia

      Canadá

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 38, Nº 2, 2022, págs. 355-432
  • Idioma: inglés
  • DOI: 10.4171/RMI/1296
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The elliptic sine-Gordon equation is a semilinear elliptic equation with a special double well potential. It has a family of explicit multiple-end solutions. We show that all finite Morse index solutions belong to this family. It will also be proved that these solutions are nondegenerate, in the sense that the corresponding linearized operators have no nontrivial bounded kernel. Finally, we prove that the Morse index of 2n-end solutions is equal to n(n−1)/2.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno