Ir al contenido

Documat


Spatial Cox processes in an infinite-dimensional framework

  • María P. Frías [1] ; Antoni Torres-Signes [2] Árbol académico ; María D. Ruiz-Medina [3] Árbol académico ; Jorge Mateu [4]
    1. [1] Universidad de Jaén

      Universidad de Jaén

      Jaén, España

    2. [2] Universidad de Málaga

      Universidad de Málaga

      Málaga, España

    3. [3] Universidad de Granada

      Universidad de Granada

      Granada, España

    4. [4] Department of Mathematics, University Jaume I, Castellón, Spain
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 31, Nº. 1, 2022, págs. 175-203
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We introduce a new class of spatial Cox processes driven by a Hilbert-valued random log-intensity. We adopt a parametric framework in the spectral domain, to estimate its spatial functional correlation structure. Specifically, we consider a spectral functional, approach based on the periodogram operator, inspired on Whittle estimation methodology. Strong consistency of the parametric estimator is proved in the linear case. We illustrate this property in a simulation study under a Gaussian first-order Spatial Autoregressive Hilbertian scenario for the log-intensity model. Our method is applied to the spatial functional prediction of respiratory disease mortality in the Spanish Iberian Peninsula, in the period 1980–2015.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno