Ir al contenido

Documat


Performance and Convergence Analysis of Modified C-Means Using Jeffreys-Divergence for Clustering

  • Ayan Seal [1] ; Aditya Karlekar [3] ; Ondrej Krejcar [4] ; Enrique Herrera-Viedma [2]
    1. [1] Indian Institute of Information Technology

      Indian Institute of Information Technology

      India

    2. [2] Universidad de Granada

      Universidad de Granada

      Granada, España

    3. [3] Hitkarini College of Engineering and Technology, Jabalpur, 482005 (India)
    4. [4] Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove, 50003 (Czech Republic) / Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur (Malaysia)
  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 7, Nº. 2, 2021, págs. 141-149
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2021.04.009
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The size of data that we generate every day across the globe is undoubtedly astonishing due to the growth of the Internet of Things. So, it is a common practice to unravel important hidden facts and understand the massive data using clustering techniques. However, non- linear relations, which are essentially unexplored when compared to linear correlations, are more widespread within data that is high throughput. Often, nonlinear links can model a large amount of data in a more precise fashion and highlight critical trends and patterns. Moreover, selecting an appropriate measure of similarity is a well-known issue since many years when it comes to data clustering. In this work, a non-Euclidean similarity measure is proposed, which relies on non-linear Jeffreys-divergence (JS). We subsequently develop c- means using the proposed JS (J-c-means). The various properties of the JS and J-c-means are discussed. All the analyses were carried out on a few real-life and synthetic databases. The obtained outcomes show that J-c-means outperforms some cutting-edge c-means algorithms empirically.

  • Referencias bibliográficas
    • H. Wattimanela, U. Pasaribu, S. Indratno, A. Puspito, “Eartquakes clustering based on the magnitude and the depths in molluca province,” in...
    • J. Yang, J. Cao, R. He, L. Zhang, “A unified clustering approach for identifying functional zones in suburban and urban areas,” in IEEE INFOCOM...
    • T. Pitchayaviwat, “A study on clustering customer sugges tion on online social media about insurance services by using text mining techniques,”...
    • R. Suresh, I. Anand, B. Vianesh, H. R. Mohammed, “Study of clustering algorithms for library management system,” in 2018 International Conference...
    • A. Naik, D. Reddy, P. K. Jana, “A novel clustering algorithm for biological data,” in 2011 Second International Conference on Emerging Applications...
    • K. C. Gull, A. B. Angadi, C. G. Seema, S. G. Kanakaraddi, “A clustering technique to rise up the marketing tactics by looking out the key...
    • J. Li, A. Nehorai, “Gaussian mixture learning via adaptive hierarchical clustering,” Signal Processing, vol. 150, pp. 116–121, 2018.
    • R. Abe, S. Miyamoto, Y. Endo, Y. Hamasuna, “Hierarchical clustering algorithms with automatic estimation of the number of clusters,” in 17th...
    • S. Ghassempour, F. Girosi, A. Maeder, “Clustering multivariate time series using hidden markov models,” International Journal of Environmental...
    • M. Pacella, A. Grieco, M. Blaco, “On the use of self-organizing map for text clustering in engineering change process analysis: A case study,”...
    • V. Schellekens, L. Jacques, “Quantized compressive k-means,” IEEE Signal Processing Letters, vol. 25, no. 8, 2018.
    • K. K. Sharma, A. Seal, “Spectral embedded generalized mean based k-nearest neighbors clustering with s-distance,” Expert Systems with Applications,...
    • K. K. Sharma, A. Seal, “Outlier-robust multi-view clustering for uncertain data,” Knowledge-Based Systems, vol. 211, p. 106567, 2021.
    • K. K. Sharma, A. Seal, “Multi-view spectral clustering for uncertain objects,” Information Sciences, vol. 547, pp. 723–745, 2021.
    • L. Bottou, Y. Bengio, “Convergence properties of the k-means algorithms,” in Advances in neural information processing systems, 1995, pp....
    • A. Karlekar, A. Seal, O. Krejcar, C. Gonzalo-Martin, “Fuzzy k-means using non-linear s-distance,” IEEE Access, vol. 7, pp. 55121–55131, 2019.
    • A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh, “Clustering with bregman divergences,” Journal of machine learning research, vol. 6, no....
    • S. Chakraborty, S. Das, “k- means clustering with a new divergencebased distance metric: Convergence and performance analysis,” Pattern Recognition...
    • L. Legrand, E. Grivel, “Jeffrey’s divergence between moving-average models that are real or complex, noise-free or disturbed by additive white...
    • K. K. Sharma, A. Seal, “Modeling uncertain data using monte carlo integration method for clustering,” Expert systems with applications, vol....
    • A. Seal, A. Karlekar, O. Krejcar, C. Gonzalo-Martin, “Fuzzy c- means clustering using jeffreys-divergence based similarity measure,” Applied...
    • F. Nielsen, R. Nock, “Total jensen divergences: Definition, properties and clustering,” in IEEE International Conference on Acoustics, Speech...
    • F. Nielsen, R. Nock, S. I. Amari, “On clustering histograms with k-means by using mixed -divergences,” Entropy, vol. 16, 2014.
    • R. Nock, F. Nielsen, S.-I. Amari, “On conformal divergences and their population minimizers,” IEEE Transactions on Information Theory, vol....
    • M. D. Gupta, S. Srinivasa, J. Madhukara, M. Antony, “Kl divergence based agglomerative clustering for automated vitiligo grading,” in IEEE...
    • A. Notsu, O. Komori, S. Eguchi, “Spontaneous clustering via minimum gamma-divergence,” Neural Computation, vol. 26, 2014.
    • K. K. Sharma, A. Seal, “Clustering analysis using an adaptive fused distance,” Engineering Applications of Artificial Intelli- gence, vol....
    • A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognition Letters, vol. 31, no. 8, 2010.
    • L. Legrand, E. Grivel, “Jeffrey’s divergence between moving-average models that are real or complex, noise-free or disturbed by additive white...
    • J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. García, L. Sánchez, F. Herrera, “Keel data-mining software tool: Data set repository,...
    • D. Dheeru, E. Karra Taniskidou, “Uci machine learning repository,” 2017. [Online]. Available: http://archive.ics.uci.edu/ml.
    • U. Maulik, S. Bandyopadhyay, “Performance evaluation of some clustering algorithms and validity indices,” IEEE Transactions on Pattern Analysis...
    • N. X. Vinh, J. Epps, J. Bailey, “Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction...
    • L. Hubert, P. Arabie, “Comparing partitions,” Journal of classification, vol. 2, no. 1, 1985.
    • P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Journal of computational and applied...
    • J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings of the fifth Berkeley symposium on...
    • S. Chakraborty, S. Das, “k- means clustering with a new divergencebased distance metric: Convergence and performance analysis,” Pattern Recognition...
    • L. Hubert, P. Arabie, “Comparing partitions,” Journal of classification, vol. 2, no. 1, pp. 193–218, 1985.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno