Ir al contenido

Documat


An existence result for a strongly nonlinear parabolic equations with variable nonlinearity

  • Ait Hammou, Mustapha [2] ; Azroul, Elhoussine [1] ; Lahmi, Badr [3]
    1. [1] Sidi Mohamed Ben Abdellah University

      Sidi Mohamed Ben Abdellah University

      Fes-Medina, Marruecos

    2. [2] University Sidi Mohamed Ben Abdellah.
    3. [3] Moulay Ismail University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 1, 2022, págs. 111-135
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4457
  • Enlaces
  • Resumen
    • We prove the existence of a solution for the strongly nonlinear parabolic initial boundary value problem associated to the equation ut − div a(x, t, ∇u) + g(x, t, u, ∇u) = f, where the vector field a(x, t, ξ) exhibits non-standard growth conditions.

  • Referencias bibliográficas
    • H. Amann, Ordinary differential equations: an introduction to nonlinear analysis. Berlin: De Gruyter, 1990.
    • S. Antontsev and S. Shmarev, “Anisotropic parabolic equations with variable nonlinearity”, Publicacions matemàtiques, vol. 53, pp. 355–399,...
    • M. Bendahmane, P. Wittbold, and A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data”,...
    • L. Boccardo, F. Murat, and J. P. Puel, “Existence of bounded solutions for non linear elliptic unilateral problems”, Annali di matematica...
    • Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM journal on applied mathematics,...
    • L. Diening, P. Nägele, and M. Růžička, “Monotone operator theory for unsteady problems in variable exponent spaces”, Complex variables and...
    • L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev spaces with variable exponents. Berlin: Springer, 2011.
    • X.-L. Fan and D. Zhao, “On the spaces Lp(x)(Ω) and Wm,p(x)(Ω)”, Journal of mathematical analysis and applications, vol. 263, no. 2, pp. 424–446,...
    • Y. Q. Fu and N. Pan, “Existence of solutions for nonlinear parabolic problem with p(x)-growth”, Journal of mathematical analysis and applications,...
    • P. Harjulehto, P. Hästö, M. Koskenoja, and S. Varonen, “The dirichlet energy integral and variable exponent sobolev spaces with zero boundary...
    • O. Kovácik and J. Rákosník, “On Spaces Lp(x) and Wk,p(x)”, Czechoslovak mathematical journal, vol. 41, pp. 592-618, 1991.
    • R. Landes, “On the existence of weak solutions for quasilinear parabolic initial-boundary value problems”, Proceedings of the royal society...
    • J.-L. Lions, Quelques m´ethodes de r´esolution des probl`emes aux limites non lineaires. Paris: Dunod Gauthier Villars, 1969.
    • J. -L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Paris: Dunod Gauthier Villars, 1968.
    • M. Růžička, Electrorheological fluids: modeling and mathematical theory. Berlin: Springer, 2000.
    • S. G. Samko, ”Density of C ∞ 0 (RN) in the generalized Sobolev spaces Wm,p(x) (Rn )”, Doklady Akademii Nauk, vol. 369, no. 4, pp. 451-454,...
    • J. Simon, “Compact set in the space Lp(0,T,B)”, Annali di matematica pura ed applicata, vol. 146, pp. 65-96, 1987. Available: https://bit.ly/3HTNuLM
    • A. Youssfi, E. Azroul, and B. Lahmi, “Nonlinear parabolic equations with nonstandard growth”, Applicable analysis, vol. 95, no. 12, pp. 2766–2778,...
    • C. Zhang and S. Zhou, “Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data”, Journal...
    • V. V. Zhikov, ”On Lavrentiev’s phenomen”, Russian Journal of Mathematical Physics, vol. 3, no. 2, pp. 249-269, 1995.
    • V. V. Zhikov, ”On the density of smooth functions in Sobolev-Orlicz spaces”, Zapiski naučnyh seminarov Leningradskogo otdeleniâ ordena Lenina...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno