Ir al contenido

Documat


Some integral inequalities involving the k-Beta function using (m, h_{1}, h_{2})-convex functions.

  • Hernández Hernández, Jorge Eliecer [1]
    1. [1] Universidad Centroccidental Lisandro Alvarado

      Universidad Centroccidental Lisandro Alvarado

      Venezuela

  • Localización: MATUA: Revista de matemática de la universidad del Atlántico, ISSN-e 2389-7422, Vol. 8, Nº. 1, 2021 (Ejemplar dedicado a: Revista MATUA: En memoria de Jorge Luis Rodríguez Contreras 1953-2021), págs. 101-113
  • Idioma: inglés
  • Títulos paralelos:
    • Algunas desigualdades integrales que involucran la función $ k- Beta usando funciones (m, h_{1}, h_{2})-Convexas
  • Enlaces
  • Resumen
    • español

      El presente trabajo trata acerca del estudio de la integral del tipo        para $ p,q,k > 0 $, considerando algunas desigualdades para funciones $(m,h_{1},h_{2})- $convexas. De estos  resultados se derivan algunas otras desigualdades integrales para otras clases de funciones convexas generalizadas.

    • English

      The present work deals with the study of the integral of the type for $ p,q,k > 0 $, considering some inequalities for $ (m,h_{1},h_{2})- $convex functions. From these results some others integral  inequalities for other class of generalized convex functions are obtained.

  • Referencias bibliográficas
    • [1] M. Alomari and M. Darus, On The Hadamard’s Inequality for Log-Convex Functions on the Coordi- nates, J. Ineq. Appl., 2009 (2009), Article...
    • [2] M. Alomari, M. Darus, S.S. Dragomir and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second...
    • [3] M. Bombardelli and S. Varosˇanec. Properties of h-convex functions related to the Hermite-Hadamard- Fe ́jer inequalities. Computers and...
    • [4] G. Cristescu, M.A. Noor and M.U. Awan. Bounds of the second degree cumulative frontier gaps of functions with generalized convexity. Carpath....
    • [5] G. Cristescu, M. Ga ̆ianu and A. M. Uzair. Regularity properties and integral inequalities related to (k; h1; h2)-convexity of functions....
    • [6] R. Diaz and E. Pariguan. On hypergeometric functions and Pochhammer k-symbol. Divulgaciones Ma- tema ́ticas, 15 (2) (2007), 179-192
    • [7] S. S. Dragomir, J. Pecˇaric ́ and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (3) (1995), 335 - 341.
    • [8] S.S. Dragomir and S. Fitzpatrick, The Hadamard Inequalities for s−convex functions in the second sense , Demostratio Mathematica, 4 (1999),...
    • [9] A. Hassibi, J. P. How and S. Boyd, Low-authority controller design via convex optimization, AIAA Journal of Guidance, Control, and Dynamics,...
    • [10] J.E. Herna ́ndez H, On a Hardy’s inequality for a fractional integral operator, Annals of the University of Craiova, Mathematics and...
    • [11] J. E. Herna ́ndez Herna ́ndez. Some integral inequalities involving the k−Beta function using h−convex functions. Lecturas Matema ́ticas....
    • [12] J.-B. Hiriart-Urruty, Global optimality conditions in maximizing a convex quadratic function under convex quadratic constraints, J. Global...
    • [13] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100-111
    • [14] W.Liu,SomeNewIntegralInequalitiesviaP−convexity,arxiv:1202.0127v1[math.FA].1(2012),avai- lable in: http://arxiv.org/abs/1202.0127
    • [15] M.E.O ̈zdemir,E.SetandM.Alomari,Integralinequalitiesviaseveralkindsofconvexity.Creat.Math. Inform. 20 (1) (2011), 62 - 73
    • [16] Z. Pavic ́ and M. Avci Ardic, The most important inequalities for m-convex functions. Turk J. Math. 41 (2017), 625-635.
    • [17] B. T. Polyak, Convexity of quadratic transformations and its use in control and optimization,J. Optim. Theory Appl. 99 (1998), 553-583.
    • [18] A. Rehman, S. Mubeen, R. Safdar and N. Sadiq. Properties of k−Beta function with several variables, Open Math. 13 (2015) , 308-320
    • [19]M.Z.Sarikaya,E.SetandM.E.O ̈zdemir,OnsomenewinequalitiesofHadamardtypeinvolving h−convex functions. Acta Math. Univ. Comenian. 79(1) (2010),...
    • [20] E. Set, A. Akdemir and N. Uygun, On new simpson type inequalities for generalized quasi-convex mappings, Xth International Statistics...
    • [21] Shi, D-P., Xi B-Y., Qi, F. Hermite–Hadamard Type Inequalities for (m, h1, h2)−Convex Functions Via Riemann-Liouville Fractional Integrals....
    • [22] S. Varosˇanec, On h−convexity, J. Math. Anal. Appl. 326(1) (2007), 303-311.
    • [23] M.J.VivasandJ.E.Herna ́ndezH,OnsomenewgeneralizedHermite-Hadamard-Fe ́jerinequalitiesfor
    • product of two operator h−convex functions. Appl. Math. Inf. Sci. 11(4) (2017), 983-992
    • [24] M.J. Vivas-Cortez and Y.C. Rangel Oliveros, Ostrowski type inequalities for functions whose second derivatives are convex generalized....
    • [25] M.J.Vivas,C.Garc ́ıaandJ.E.Herna ́ndezH,Ostrowski-typeinequalitiesforfunctionswhosederivative modulus is relatively (m, h1 , h2 )−convex....
    • [26] B.Xi,F.Qi.PropertiesandInequalitiesforthe(h1,h2)and(h1,h2,m)−GA-Convexfunctions.Journal Cogent Mathematics. 3 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno