Ir al contenido

Documat


Desigualdades del tipo Hermite-Hadamard para Procesos Estocásticos cuyas segundas derivadas son (m,h1,h2)-convexas usando la integral fraccional de Riemann Liouville

  • Hernández H, Jorge Eliecer [1] ; Gomez, Juan Francisco
    1. [1] Universidad del Atlántico

      Universidad del Atlántico

      México

  • Localización: MATUA: Revista de matemática de la universidad del Atlántico, ISSN-e 2389-7422, Vol. 5, Nº. 1, 2018 (Ejemplar dedicado a: Revista MATUA), págs. 13-28
  • Idioma: español
  • Títulos paralelos:
    • Hermite Hadamard type inequalities for Stochastic Processes whose Second Derivatives are $(m,h_{1},h_{2})-$Convex using Riemann-Liouville Fractional Integral.
  • Enlaces
  • Resumen
    • español

      En el presente trabajo encontramos algunas desigualdades del tipo Hermite-Hadamard para Procesos Estoc´asticos cuyassegundas derivadas son (m; h1; h2)-convexos, usando la integral fraccional de Riemann-Liouville.

    • English

      In this work we find new Hermite-Hadamard type inequalities for Stochastic Processes whose second derivatives are $(m,h_{1},h_{2})-$convex using Riemann-Liouville fractional integral.

  • Referencias bibliográficas
    • M. Alomari, M. Darus. On The Hadamard’s Inequality for Log-Convex Functions on the Coordinates. J. Ineq. Appl. Volume 2009, Article ID 283147,...
    • Alomari M., Darus M., Dragomir S.S., Cerone P. Otrowski type inequalities for functions whose derivatives are s-convex in the second sense...
    • M. Alomari, M. Darus, U. Kirmaci. Some Inequalities of Hermite-Hadamard type for s-Convex Functions. Acta Mathematica Scientia 2011,31B(4):1643–1652
    • A. Bain, D. Crisan. Fundamentals of Stochastic Filtering. Stochastic Modelling and Applied Probability, 60. Springer, New York. 2009.
    • A. Barani, S. Barani, S. S. Dragomir. Refinements of Hermite-Hadamard Inequalities for Functions When a Power of the Absolute Value of the...
    • Delavar, M.R., De la Sen, M. Some generalizations of Hermite–Hadamard type inequalities. Springer-Plus (2016) 5:1661
    • P. Devolder, , J. Janssen, R. Manca. Basic stochastic processes. Mathematics and Statistics Series. ISTE, London; John Wiley and Sons, Inc....
    • Gordji, M.E., Dragomir, S.S., Delavar, M.R. An inequality related to eta-convex functions (II). Int. J. Nonlinear Anal. Appl. 6 (2015) No....
    • M.E. Gordji, M.R. Delavar, M. De la Sen. On phi-Convex Functions. J. Math. Ineq. 10 (2016), No. 1, 173–183
    • R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien, (1997) 223-276.
    • M. Grinalatt ., J.T. Linnainmaa . Jensen’s Inequality, parameter uncertainty and multiperiod investment. Review of Asset Pricing Studies....
    • D. Kotrys. Hermite-hadamart inequality for convex stochastic processes, Aequationes Mathematicae 83 (2012),143-151
    • D, Kotrys. Remarks on strongly convex stochastic processes. Aequat. Math. 86 (2013), 91–98.
    • P. Kumar, Hermite-Hadamard inequalities and their applications in estimating moments, Mathematical Inequalities and Applications, (2002)
    • W. Liu, W. Wen, J. Park. Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. J. Nonlinear...
    • T, Mikosch. Elementary stochastic calculus with finance in view. Advanced Series on Statistical Science and Applied Probability, 6. World...
    • S. Miller, B. Ross, An introduction to the Fractional Calculus and Fractional Diferential Equations, John Wiley & Sons, USA, (1993).
    • D.S. Mitrinovic, I.B. Lackovic, Hermite and convexity, Aequationes Math., 28(1) (1985) 229-232.
    • B. Nagy. On a generalization of the Cauchy equation. Aequationes Math. 11 (1974). 165–171.
    • K. Nikodem. On convex stochastic processes., Aequationes Math. 20 (1980), no. 2-3, 184–197.
    • Z. Pavi´c, M. Avci Ardic. The most important inequalities for m-convex functions. Turk J. Math. 41 (2017), 625-635
    • I. Podlubni, Fractional Diferential Equations, Academic Press, San Diego, (1999).
    • Ruel J.J., Ayres M.P. Jensen’s inequality predicts effects of environmental variations. Trends in Ecology and Evolution. 14 (9) (1999), 361-366
    • M. Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities,...
    • E. Set, M. Tomar, S. Maden. Hermite Hadamard Type Inequalities for s-Convex Stochastic Processes in the Second Sense. Turkish Journal of Analysis...
    • E. Set, A. Akdemir, N. Uygun. On New Sımpson Type Inequalities for Generalized Quasi-Convex Mappings. Xth International Statistics Days Conference,...
    • M. Shaked, J. Shantikumar. Stochastic Convexity and its Applications. Arizona Univ. Tuncson. 1985.
    • J.J. Shynk. Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications. Wiley, 2013
    • A. Skowronski. On some properties of J-convex stochastic processes. Aequationes Mathematicae 44 (1992) 249-258.
    • A. Skowronski. On Wrighy-Convex Stochastic Processes. Ann. Math. Sil. 9(1995), 29-32.
    • G. Toader. Some generalizations of the convexity. Proceedings of the Colloquium on Approximation and Optimization, Univ. Cluj-Napoca, Cluj-Napoca,...
    • S. Varoˇsanec. On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303-311.
    • B. Xi, F. Qi. Properties and Inequalities for the (h1; h2)􀀀 and (h1; h2;m)-GA-Convex functions. Journal Cogent Mathematics. 3(2016)
    • E. A. Youness. E-convex sets, E-convex functions, and Econvex programming., J. Optim. Theory Appl. (1999), no. 2, 439–450

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno