Ir al contenido

Documat


Sobre funciones C^2 -convexas y dinámica discreta

  • Romero, N. [1]
    1. [1] Universidad Centroccidental Lisandro Alvarado

      Universidad Centroccidental Lisandro Alvarado

      Venezuela

  • Localización: MATUA: Revista de matemática de la universidad del Atlántico, ISSN-e 2389-7422, Vol. 3, Nº. 1, 2016 (Ejemplar dedicado a: Revista de Matemática MATUA), págs. 61-73
  • Idioma: español
  • Títulos paralelos:
    • On C2-convex functions and discrete dynamic
  • Enlaces
  • Resumen
    • español

      En este artículo reportamos varios conocidos resultados sobre la dinámica dada por la interaciónn de endomorfismos de R^n en los que al menos una de sus funciones coordenadas tiene cierto tipo de convexidad (C^2 -convexidad). Expondremos las propiedades básicas (analíticas y geométricas) de esta clase de funciones convexas que tienen importante influencia en los fenómenos dinámicos que son discutidos; también presentaremos algunos problemas que consideramos interesantes abordar. 

    • English

      In this paper we review several known results on the dynamics given by the iteration of endomorphisms on Rn in which at least one of the coordinate functions has certain type of convexity (C2-convexity). We will expose the basic properties (analytical and geometric) of this kind of functions which have important influence in the discussed dynamics phenomena. We will also present some problems that we consider interesting to appoach.

  • Referencias bibliográficas
    • E. Allman and J. Rhodes, Mathematical Models in Biology: An Introduction. Cambridge University Press (2004).
    • J. Banasiak, Mathematical Models in One Dimension: An Introduction via Dierence and Dierential Equations. Cambridge University Press (2013).
    • L. A. Bunimovich. Coupled Map Lattices: at the age of Maturity. Lect. Notes Phys. 671, 9–32 (2005).
    • F. Brauer and C. Castillo-Ch´avez, Mathematical Models in Populations Biology and Epidemiology. Texts in Applied Mathematics, 40. Springer-Verlag,...
    • R. Courant and D. Hilbert. Methods of Mathematical Physics I. Interscience Publishers, Inc. NY (1953).
    • J. Delgado, N. Romero, A. Rovella and F. Vilamaj´o. Bounded solutions of quadratic circulant dierence equations. J. Dierence Equ. Appl. Vol....
    • J. Delgado, N. Romero, A. Rovella and F. Vilamaj´o. Hyperbolic real quadratic cellular automata. Dyn. Contin. Discrete Impuls. Syst. Ser....
    • J. Delgado, J. Garrido, N. Romero, A. Rovella, F. Vilamaj´o. On the Geometry of Quadratic Maps of the Plane. Publ. Mat. Urug, 14, 108–123...
    • V. Dobrynskiy. On properties of coupled quadratic mappings. Nonlinear Analysis. 35, 247–267 (1999).
    • V. Dobrynskiy. Critical sets and properties of endomorphisms built by coupling of two identical quadratic mappings. J. Dynam. Control Systems....
    • B. Fernandez and M. Jiang. Coupling two unimodal mapas with simple kneading sequences. Ergod. Th. & Dynam. Sys. 24, 107–125 (2004).
    • M. Giaquinta and G. Modica. Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables. Birkha¨user (2012).
    • W. H. Haemers. Interlacing eigenvalues and graphs. Linear Algebra Appl. Vol. 227-228, 593 – 616 (1995).
    • G. Hedlund. Endomorphisms and automorphims of the shift dynamical systems, Mathematical Systems Theory 3, 320 – 375 (1969).
    • S. Hidetsugu and T. Kazuhisa. Bifurcations of the Coupled Logistic Map. Progr. Theoret. Phys. 78 (2), 305–315 (1987).
    • Suk-Geun Hwang. Cauchy’s Interlace Theorem for Eigenvalues of Hermitian Matrices. Amer. Math. Monthly. Vol. 111, No. 2, 157 – 159 (2004).
    • K. Kaneko. Pattern dynamics in spatiotemporal chaos. Physica D. 34, 1–41 (1989).
    • A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, 54....
    • W.W. Lin, C. C. Peng and C. S.Wang. Synchronization in coupled map lattices with periodic boundary conditions. Internat. J. Bifur. and Chaos...
    • W. W. Lin and Y. Q. Wang. Chaotic Synchronization in coupled map lattices with periodic boundary conditions. SIAM J. Applied Dynamical Systems...
    • Y. L. Maistrenko, V. L. Maistrenko, A. Popovich and E. Mosekilde. Transverse instability and riddled basins in a system of two coupled logistic...
    • Y. L. Maistrenko, V. L. Maistrenko, A. Popovich and E. Mosekilde. Desynchronization of chaos in coupled logistic maps. Phys. Rev. E. 60 (3),...
    • R. Mañé and C. Pugh. Stability of endomorphisms. Lecture Notes in Math. Vol. 468, 175–184. Springer-Verlag, New York (1975).
    • P. Montel. Le¸cons sur les Récurrences et leurs Applications. Gauthier Vilars, (1957).
    • Constantin Niculescu and Lars-Erik Persson. Convex Functions and their Applications. A Contemporary Appoach. CMS Books in Mathematics. Springer-Verlag...
    • F. Przytycki. On -stability and structural stability of endomorphisms satisfying Axiom A, Studia Math. 60 (1977), 61–77.
    • N. Romero, A. Rovella and F. Vilamajó. On the Dynamics fo n-Dimensional Quadratic Endomorphisms. Commun. Math. Phys. Vol. 195, 295 – 308 (1998).
    • N. Romero, A. Rovella y F. Vilamajó. Endomorfismos convexos con retardo en R2: la dinámica de los cuadráticos. XI Escuela Venezolana de Matemática....
    • N. Romero, A. Rovella and F. Vilamajó. Invariant manifolds for delay endomorphisms. Discrete Contin. Dyn. Syst. Vol. 7, No. 1, 35 – 50 (2001).
    • N. Romero, A. Rovella and F. Vilamajó. Dynamics of vertical delay endomorphisms. Discrete Contin. Dyn. Syst. Ser. B. Vol. 3, No. 3, 409 –...
    • N. Romero, A. Rovella and R. Vivas. Invariant Manifolds and Synchronization for Coupled Logistic Mappings. International Journal of Pure and...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno