Ir al contenido

Documat


Estudio numérico de la propagación de ondas electromagnéticas 2-D por FDTD

  • Autores: Francisco Racedo Niebles, Larry Theran, René Alvarez, Sonia Valbuena
  • Localización: MATUA: Revista de matemática de la universidad del Atlántico, ISSN-e 2389-7422, Vol. 1, Nº. 1, 2014 (Ejemplar dedicado a: Revista de Matemática MATUA), págs. 71-77
  • Idioma: español
  • Títulos paralelos:
    • Numerical study of the propagation of electromagnetic waves 2D for DTD
  • Enlaces
  • Resumen
    • español

      En este trabajo se presenta una simulación en MatLab de la propagación de ondas electromagnéicas en un dominio bidimensional. Para esto se discretizaron las ecuaciones rotacionales de Maxwell usando la celda elemental de Yee para el espacio y el algoritmo Leapfrog para el tiempo. Con lo cual se obtuvieron valores del campo eléctrico y magnético, mas cercanos a los reales  que con otros métodos. Como se trabajó con un problema de evolución en el tiempo con dominios no acotados se introdujo las Absorbing Boundary Condition (ABC) para evitar reflexiones en la frontera del dominio debido a las limitaciones computacionales. 

    • English

      This paper presents a Matlab simulation of the propagation of electromagnetic waves in two-dimensional domain. For this discretized Maxwell rotational equations using elementary Yee’s cell for space and the Leapfrog algorithm for time. Thus obtained values of electric and magnetic field, and obtained higher accuracy than other methods. As we worked with a problem of evolution over time with unbounded domains is introduced Absorbing Boundary Condition (ABC)to avoid reflections on the boundary of the domain due to computational limitations.

  • Referencias bibliográficas
    • A.TAFLOVE, S. HAGNESS (2005) Computational Electrodynamic
    • the finite-difference time-domain method. Artech House, Boston, London.
    • DENNIS M. SULLIVAN (2000) “Electromagnetic Simulation Using the FDTD Method”. IEEE PRESS.
    • Valéria de Magalhaes Iório. EDP um curso de graduacao. Instituto de matemática pura y aplicada IMPA, Rio de janeiro, 1991.
    • Moysey Brio, Aramais Zakharian & Gary M. Webb. Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers. C.K...
    • Univ. de Extremadura. Apuntes de ecuaciones diferenciales,
    • Dpto. de Matemáticas. Badajoz-España, Mayo 2013.[Documento
    • en líınea]. http://matematicas.unex.es/ ricarfr/Ec-Diferenciales/LibroEDlat.pdf.
    • Ignacio Gracia Rivas & Narciso Román Roy. Apuntes de ecuaciones diferenciales, Departamento de de Matemática Aplicada IV, Barcelona España,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno