Ir al contenido

Documat


Espacio de Sobolev W^(m,p) (Ω) con 1≤p≤+∞

  • Autores: Jaider Blanco Gamarra, Cristian Rojas Milla
  • Localización: MATUA: Revista de matemática de la universidad del Atlántico, ISSN-e 2389-7422, Vol. 1, Nº. 1, 2014 (Ejemplar dedicado a: Revista de Matemática MATUA), págs. 77-85
  • Idioma: español
  • Títulos paralelos:
    • Sobolev Spaces Wm,p(W) with 1 p +¥
  • Enlaces
  • Resumen
    • español

      En este artículo hacemos una breve revisión de los espacios de Sobolev, para lo cual presentamos su estructura vectorial ligada a los espacios Lp. Además, Se muestran que dichos espacios son normados, de Banach, separables y algunos son reflexivos (i,e; es isomorfo a su bidual) y finalmente se demostrarán los teoremas de inmersión y de aproximación por funciones suaves en dichos espacios.  

    • English

      This article is a brief review of Sobolev spaces, for which we present vector structure linked to Lp spaces. In addition, such spaces are displayed are normed, Banach, and some are separable reflexive (i, e, is isomorphic to its bidual) and finally immersion prove theorems and approximation by smooth functions in such spaces.

  • Referencias bibliográficas
    • R.A. Adams, Sobolev Spaces , Academic Press, New York, 1975.
    • Grisvard, P. (1985), Elliptic Problems in Nonsmooth Domains. Pitman, Boston.
    • Stein, E.M. (1970), Singular Integrals and Diferentiability
    • Properties of Funcrions. Princeton University Press, Princeton.
    • V.I Burenkov; Mollifying operators with variable step and their applications to approximation by differentiable funtions, In”Nonlinear analysis,...
    • A. Kufner, Weighted Sobolev spaces, John Wiley and Sons 1983.
    • A.A. Dezin. On embedding theorems and extension problem, Dokl. Akad. Nauk SSSR 88(1953-54),741- 743(Russian).
    • L.C. Evans, Partial Differential Equations , AMS, Providence, RI, 1998.
    • A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
    • A. Friedman, Foundations of Modern Analysis, Dover Publications, Inc., New York,1982.
    • D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order , Springer-Verlag,Berlin, 1983.
    • D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
    • J.T. Marti, Introductionto Sobolev Spaces and Finite Element Solution of Elliptic Boundary Value Problems, Academic Press, London, 1986.
    • V.G. Maz’ja, Sobolev Spaces , Springer-Verlag, Berlin, 1985.
    • C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations , Springer-Verlag, New York, 1966.
    • J. Necas, Introduction to the Theory of Nonlinear Elliptic Equations , Teubner, Leipzig, 1983.
    • J. Necas, Les Méthodes Directes en Théorie des Équations Elliptiques , Academia, Prague, 1967.
    • L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute, New York, 1974.
    • S.L. Sobolev, On a theorem of functional analysis, Mat. Sb. 4 (46) 1938, 39-68 (translated into English in 1963).
    • H. Tanabe, Functional Analytic Methods for Partial Differential
    • Equations , Dekker, New York, 1997.
    • H. Triebel, Interpolation Theory, Function Spaces, Differential
    • Operators , VebDeutscher, Berlin, 1978.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno