Ir al contenido

Documat


Dynamics of a Discrete-Time Predator–Prey System with Holling II Functional Response

  • Arias, Carlos F. [1] ; Blé, Gamaliel [1] ; Falconi, Manuel [2]
    1. [1] UJAT
    2. [2] UNAM
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 2, 2022
  • Idioma: inglés
  • DOI: 10.1007/s12346-022-00562-5
  • Enlaces
  • Resumen
    • The dynamics behavior of a discrete-time predator–prey system, with Holling II functional response, is analyzed. The model shows a rich dynamical behavior in the feasible region. Some invariant sets are found and parameter conditions for the existence and stability of the fixed points are given. A parameter region where the system exhibits either a period-doubling or a Neimark–Sacker bifurcation is shown. In addition, conditions are provided on parameters that lead to chaotic dynamics. Finally, to illustrate our theoretical analysis some numerical simulations are shown.

  • Referencias bibliográficas
    • 1. Adler, F.R.: Migration alone can produce persistence of host-parasitoid models. Am. Nat. 141, 642–650 (1993)
    • 2. Cui, Q., Zhang, Q., Qiu, Z., Hu, Z.: Complex dynamics of a discrete-time predator–prey system with Holling IV functional response. Chaos...
    • 3. Din, Q.: Complexity and chaos control in a discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)
    • 4. Doebeli, M.: Genetic variation and the persistence of predator–prey interactions in the Nicholson– Bailey model. J. Theor. Biol. 188, 109–120...
    • 5. Elaydi, S.: An Introduction to Difference Equations, 3rd edn. Springer, New York (2005)
    • 6. Elaydi, S.: Discrete Chaos: With Applications in Science and Engineering, 2nd edn. Chapman Hall/CRC, Boston (2008)
    • 7. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)
    • 8. Huang, J., Ruan, S., Xiao, D.: Bifurcations in a discrete predator–prey model with nonmonotonic functional response. J. Math. Anal. Appl....
    • 9. Khan, A.Q.: Stability and Neimark–Sacker bifurcation of a ratio-dependence predator–prey model. Math. Methods Appl. Sci. 40, 4109–4117...
    • 10. Khan, A.Q.: Bifurcations of a two-dimensional discrete-time predator–prey model. Adv. Differ. Equ. 56, 1–23 (2019)
    • 11. Kopp, M., Gabriel, W.: The dynamic effects of an inducible defense in the Nicholson–Bailey model. Theor. Pop. Biol 70, 43–55 (2006)
    • 12. Li, S., Zhang, W.: Bifurcations of a discrete prey–predator model with Holling type II functional response. Discrete Contin. Dyn. Syst....
    • 13. Marotto, F.R.: Snap-back repellers imply chaos in Rn. J. Math. Anal. Appl. 63, 199–223 (1978)
    • 14. Marotto, F.: On redefining a snap-back repeller. Chaos Solitons Fractals 25, 25–28 (2005)
    • 15. Murray, J.D.: Mathematical Biology. Springer, New York (1993)
    • 16. Nicholson, A.J., Bailey, V.A.: The Balance of Animal Populations. Part I. Proc. Zool. Soc. Lond. 105, 551–598 (1935)
    • 17. Saito, Y., Ma, W., Hara, T.: A necessary and sufficient condition for permanence of a Lotka–Volterra discrete system with delays. J. Math....
    • 18. Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. R. Comit. Tallas. Memoria 2, 31–113 (1927)
    • 19. Wang, J., Feˇckan, M.: Dynamics of a discrete nonlinear prey–predator model. Int. J. Bifurc. Chaos Appl. Sci. Eng. 30, 2050055 (2020)
    • 20. Wiede, V., Varriale, M.C., Hilker, F.M.: Hydra effect and paradox of enrichment in discrete-time predator–prey models. Math. Biosci. 310,...
    • 21. Wiggins, S.: Introduction to Applied Nonlinear Dynamical System and Chaos. Springer, New York (1990)
    • 22. Xiao, Y., Cheng, D., Tang, S.: Dynamic complexities in predator–prey ecosystem models with agestructure for predator. Chaos Solitons Fractals...
    • 23. Yakubu, A.: Searching predator and prey dominance in discrete predator–prey systems with dispersion. SIAM J. Appl. Math. 61, 870–888 (2000)
    • 24. Yang, X.: Uniform persistence and periodic solutions for a discrete predator–prey system with delays. J. Math. Anal. Appl. 316, 161–177...
    • 25. Yousef, A.M., Salman, S.M., Elsadany, A.A.: Stability and bifurcation analysis of a delayed discrete predator–prey model. Int. J. Bifurc....
    • 26. Zhao, M., Xuan, Z., Li, C.: Dynamics of a discrete-time predator–prey system. Ad. Differ. Equ. 2016, 1–26 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno