Ir al contenido

Documat


Melnikov-Type Theorem for Time Reversible System

  • He, Xiaolong [1] ; Qiu, Huanhuan [2] ; Shen, Jianhua [1]
    1. [1] Hangzhou Normal University

      Hangzhou Normal University

      China

    2. [2] Chongqing Jiaotong University

      Chongqing Jiaotong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 2, 2022
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00553-y
  • Enlaces
  • Resumen
    • We employ the Craig–Wayne–Bourgain method to study the persistence of quasi-periodic solutions under nonlinear perturbation for a class of finitely dimensional reversible system. Our results provide an alternative and detailed proof for the existence of lower dimensional invariant torus for the reversible system without using the second Melnikov condition.

  • Referencias bibliográficas
    • 1. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear...
    • 2. Bourgain, J: On Melnikov’s persistency problem. Math. Res. Lett. 4(4), 445–458 (1997)
    • 3. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. 148(2), 363–439 (1998)
    • 4. Bourgain, J: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton...
    • 5. Broer, H.W., Huitema, G.B., Takens, F., Braaksma, B.L.: Unfoldings and bifurcations of quasi-periodic tori. Mem. Amer. Math. Soc. 83(421):viii+175,...
    • 6. Chen, L.: On invariant tori in some reversible systems. (2020). arXiv:2010.11402
    • 7. Craig, W., Wayne, C.E..: Newton’s method and periodic solutions of nonlinear wave equations. Comm. Pure Appl. Math. 46(11), 1409–1498 (1993)
    • 8. Craig, W., Wayne, C.E.: Periodic solutions of nonlinear Schrödinger equations and the Nash-Moser method. In: Hamiltonian mechanics (Toru...
    • 9. de la Llave, R., González, A., Jorba, À., Villanueva, J.: KAM theory without action-angle variables. Nonlinearity 18(2), 855–895 (2005)
    • 10. de la Llave, R.: A tutorial on KAM theory. In: Smooth ergodic theory and its applications (Seattle, WA, 1999), volume 69 of Proc. Sympos....
    • 11. He, X., de la Llave, R.: Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization...
    • 12. He, X., de la Llave, R.: Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization...
    • 13. He, X., Shi, J., Shi, Y., Yuan, X.: On linear stability of KAM tori via the Craig-Wayne-Bourgain method. (2020). arXiv:2003.01487
    • 14. He, X., Yuan, X.: Construction of quasi-periodic solutions for delayed perturbation differential equations. J. Differ. Equ. 268(12), 8026–8061...
    • 15. Kriecherbauer, T.: Estimates on Green’s functions of quasi-periodic matrix operators and a new version of the coupling lemma in the Fröhlich-Spencer...
    • 16. Kriecherbauer, T.: On the existence of quasi-periodic lattice oscillations. arXiv:math/0502077 (2005)
    • 17. Li, X., de la Llave, R.: Construction of quasi-periodic solutions of delay differential equations via KAM techniques. J. Differ. Equ....
    • 18. Li, Xuemei, Yuan, Xiaoping: Quasi-periodic solutions for perturbed autonomous delay differential equations. J. Differ. Equ. 252(6), 3752–3796...
    • 19. Liu, Bin: On lower dimensional invariant tori in reversible systems. J. Differ. Equ. 176(1), 158–194 (2001)
    • 20. Liu, W.: Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices. Anal. PDE, to appear. arXiv:2007.00578
    • 21. Luque, Alejandro, Villanueva, J.: A KAM theorem without action-angle variables for elliptic lower dimensional tori. Nonlinearity 24(4),...
    • 22. Moser, Jürgen.: Stable and Random Motions in Dynamical Systems. Princeton Landmarks in Mathematics. Princeton University Press, Princeton,...
    • 23. Sevryuk, M.B.: The finite-dimensional reversible KAM theory. vol. 112, pp. 132–147. 1998. Timereversal symmetry in dynamical systems (Coventry,...
    • 24. Sevryuk, M.B.: Reversible Systems. In: Lecture Notes in Mathematics, vol. 1211. Springer-Verlag, Berlin (1986)
    • 25. Sevryuk, M.B.: New results in the reversible KAM theory, vol. 12. In: Progr. Nonlinear Differential Equations Appl., (pp. 184–199). Birkhäuser,...
    • 26. Sevryuk, M.B.: Hamiltonian and reversible systems with smooth families of invariant tori. Indag. Math. 32(2), 406–425 (2021)
    • 27. Wang, X., Junxiang, X., Zhang, D.: On the persistence of degenerate lower-dimensional tori in reversible systems. Ergodic Theory Dyn....
    • 28. Wang, X., Junxiang, X., Zhang, D.: On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems....
    • 29. Yuan, W., Yuan, X.: A KAM theorem for the Hamiltonian with finite zero normal frequencies and its applications. J. Dyn. Differ. Equ. 33(3),...
    • 30. Zhang, J.: On lower dimensional invariant tori in Cd reversible systems. Chin. Ann. Math. Ser. B 29(5), 459–486 (2008)
    • 31. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24(4), 1189–1228 (2011)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno