Jiangbin Chen, Maoan Han
In this paper, we study limit cycle bifurcations for planar piecewise smooth near-Hamiltonian systems with nth-order polynomial perturbation. The piecewise smooth linear differential systems with two centers formed in two ways, one is that a center-fold point at the origin, the other is a center-fold at the origin and another unique center point exists. We first explore the expression of the first order Melnikov function. Then by using the Melnikov function method, we give estimations of the number of limit cycles bifurcating from the period annulus. For the latter case, the simultaneous occurrence of limit cycles near both sides of the homoclinic loop is partially addressed.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados