Ir al contenido

Documat


Existence of Homoclinic Solutions for the Discrete p(k)-Laplacian Operator

  • El Allali, Zakaria [2] ; Kong, Lingju [1] ; Ousbika, Mohamed [2]
    1. [1] University of Tennessee at Chattanooga

      University of Tennessee at Chattanooga

      Estados Unidos

    2. [2] University Mohammed First (Morocco)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 2, 2022
  • Idioma: inglés
  • DOI: 10.1007/s12346-022-00568-z
  • Enlaces
  • Resumen
    • In this paper, we investigate the existence of nontrivial solutions for an anisotropic discrete nonlinear problem with a p(k)-Laplacian operator. The proof of our main result is based on a local minimum theorem for differentiable functionals due to Ricceri.

  • Referencias bibliográficas
    • 1. Avci, M., Pankov, A.: Nontrivial solutions of discrete nonlinear equations with variable exponent. J. Math. Anal. Appl. 431, 22–33 (2015)
    • 2. Avci, M., Pankov, A.: Existence results for anisotropic discrete boundary value problems. Electron. J. Differ. Equt. 2016(148), 1–11 (2016)
    • 3. Bonanno, G., Candito, P.: Non differentiable functionals and applications to ellipltic problems with discontinuous nonlinearities. J. Comput....
    • 4. Bohner, M., Caristi, G., Heidarkhani, S., Moradi, S.: Existence of at least one homoclinic solution for a nonlinear second-order difference...
    • 5. Chen, P., Tang, H., Agarwal, R.P.: Existence of homoclinic solutions for p(n)-Laplacian Hamiltonian systems on Orlicz sequence spaces....
    • 6. Cabada, A., Li, C., Tersian, S.: On Homoclinic solutions of a semilinear p-Laplacian difference equation with periodic coefficients. Adv....
    • 7. Diening, L., Harjuletho, P., Hästö, P., R ˙u˜zi˜cka, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Springer: Berlin (2011)
    • 8. Galewskia, M., Molica Bisci, G., Wieteska, R.: Existence and multiplicity of solutions to discrete inclusions with the p(k)-Laplacian problem....
    • 9. Guiro, A., Ouaro, S., Koné, B.: Weak Homoclinic solutions of anisotropic difference equations with variable exponents. Adv. Differ. Equ....
    • 10. Guiro, A., Koné, B., Ouaro, S.: Competition phenomena and weak homoclinic solutions to anisotropic difference equations with variable...
    • 11. Graef, J., Kong, L., Wang, M.: Existence of homoclinic solutions for second order difference equations with p-laplacian. Dynami. Syst....
    • 12. Iannizzotto, A., Tersian, S.: Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory. J. Math. Anal. Appl....
    • 13. Iannizzotto, A., Rˇadulescu, V.: Positive homoclinic solutions for the discrete p-Laplacian with a coercive weight function. Differ. integral...
    • 14. Kong, L.: Homoclinic solutions for a second order difference equation with p-Laplacian. Appl. Math. Comput. 247, 1113–1121 (2014)
    • 15. Kuang, J., States, on ground, of discrete p(k)-Laplacian systems in generalized Orlicz sequence spaces. Abstr. Appl. Anal. p. 808102....
    • 16. Kevrekidis, P.G., Frantzeskakis, D.J., Garretero-Gonzàlez, R.: Emergent Nonlinear Phenomena in Bose-Einstein Conden-sates. Springer, Berlin...
    • 17. Khaleghi Moghadam, M., Avci, M.: Existence results to a nonlinear p(k)−Laplacian difference equation. J. Differ. Equ. Appl. 23(10), 1652–1669...
    • 18. Khaleghi Moghadam, M.: Existence of infinitely many solutions for a class of difference equations with boundary value conditions involving...
    • 19. Moghadam, M.K., Wieteska, R.: Existence and uniqueness of positive solution for nonlinear difference equations involving p(k)-Laplacian...
    • 20. Mills, D.N.: Nonlinear Optics. Basic Concepts, Springer, Berlin (1998)
    • 21. Nastasi, A., Vetro, C.: A note on homoclinic solutions of (p, q)-Laplacian difference equations. J. Diff. Equat. Appl. 25, 331–341 (2019)
    • 22. Ricceri, B.: A general variational principle and some of its applications. J. Differ. Equ. 244, 3031–3059 (2008)
    • 23. Stegli ´nski, R.: Sequence of small homoclinic solutions for difference equations on integers. Electron. J. Diff. Equ. 2017(228), 1–12...
    • 24. Mih˘ailescu, M., R˘adulescu, V., Tersian, S.: Homoclinic solutions of difference equations with variable exponents, topological methods...
    • 25. R ˙u˜zi˜cka, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Springer: Berlin (2000)
    • 26. Steglinski, R.: On homoclinic solutions for a second order difference equation with p-Laplacian. Discr. Contin. Dyn. Syst. Ser. B 23,...
    • 27. Steglinski, R., Nockowska-Rosaik, M.: sequence of positive homoclinic solutions to difference equations with variable exponent. Math....
    • 28. Sun, G., Mai, A.: Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian. Sci. World J....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno