Ir al contenido

Documat


Existence of Generalized Solitary Wave Solutions of the Coupled KdV–CKdV System

  • Li, Haijing ; Deng, Shengfu [1]
    1. [1] Huaqiao University

      Huaqiao University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 2, 2022
  • Idioma: inglés
  • DOI: 10.1007/s12346-022-00570-5
  • Enlaces
  • Resumen
    • This paper studies the traveling wave solutions of the coupled KdV–CKdV system {ut+2buξ+auξξξ=−2b(uv)ξ,vt+bvξ+bvvξ+cvξξξ=−b(|u|2)ξ, where the parameters a, b, c are real. If these parameters satisfy some conditions, the origin is a saddle-center equilibrium, that is, the linear operator at the origin has a pair of positive and negative eigenvalues and a pair of purely imaginary eigenvalues where the real eigenvalues bifurcate from a double eigenvalue 0. We first change this system with a traveling wave frame into an ordinary differential system with dimension 4, and then give the homoclinic solution of its dominant system and the periodic solution of the whole system if the first mode in the Fourier series of the function v is activated, respectively. Using the fixed point theorem, the perturbation methods, and the reversibility, we rigorously prove that this homoclinic solution, when higher order terms are added, will persist and exponentially tend to the obtained periodic solution (called generalized homoclinic solution), which presents the existence of the generalized solitary wave solution (solitary wave solution exponentially approaching a periodic solution).

  • Referencias bibliográficas
    • 1. Albert, J., Bhattarai, S.: Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system. Adv. Differ. Equ....
    • 2. Amick, C.J., Toland, J.E.: Solitary waves with surface tension I: trajectories homoclinic to periodic orbits in four dimensions. Arch....
    • 3. Angulo, J., Matheus, C., Pilod, D.: Global well-posedness and nonlinear stability of periodic traveling waves for a Schrödinger–Benjamin–Ono...
    • 4. Angulo Pava, J.: Stability of solitary wave solutions for equations of short and long dispersive waves. Electron. J. Differ. Equ. 72, 1–8...
    • 5. Appert, K., Vaclavik, J.: Dynamics of coupled solitons. Phys. Fluids 20, 1845–1849 (1977)
    • 6. Boussinesq, J.: Thorie de l’intumescence liquide, applele onde solitaire ou de translation, se propageant dans un canal rectangulaire....
    • 7. Boussinesq, J.: Thorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide...
    • 8. Cavalcante, M., Corcho, A.J.: The initial-boundary value problem for Schrödinger–Korteweg–de Vries system on the half-line. Commun. Contemp....
    • 9. Champneys, A.R.: Codimension-one persistence beyond all orders of homoclinic orbits to singular saddle centres in reversible systems. Nonlinearity...
    • 10. Chen, L.: Orbital stability of solitary waves of the nonlinear Schrödinger-KdV equation. J. Partial Differ. Equ. 12(1), 11–25 (1999)
    • 11. Corcho, A.J., Linares, F.: Well-posedness for the Schrödinger–Korteweg–de Vries system. Trans. Am. Math. Soc. 359(9), 4089–4106 (2007)
    • 12. Deconinck, B., Nguyen, N.V., Segal, B.L.: The interaction of long and short waves in dispersive media. J. Phys. A 49(41), 415501 (2016)
    • 13. Deconinck, B., Upsal, J.: On the nonintegrability of equations for long- and short-wave interactions. Phys. Lett. A 382(29), 1916–1921...
    • 14. Deng, S., Guo, B.: Generalized homoclinic solutions of a coupled Schrödinger system under a small perturbation. J. Dyn. Differ. Equ. 24(4),...
    • 15. Dias, J.P., Figueira, M., Oliveira, F.: Well-posedness and existence of bound states for a coupled Schrödinger-gKdV system. Nonlinear...
    • 16. Friedrichs, K.O., Hyers, D.H.: The existence of solitary waves. Commun. Pure Appl. Math. 7, 517–550 (1954)
    • 17. Friesecke, G., Wattis, J.A.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161(2), 391–418 (1994)
    • 18. Grimshaw, R., Joshi, N.: Weakly nonlocal solitary waves in a singularly perturbed Korteweg–de Vries equation. SIAM J. Appl. Math. 55(1),...
    • 19. Groves, M.D., Toland, J.F.: On variational formulations for steady water waves. Arch. Ration. Mech. Anal. 137(3), 203–226 (1997)
    • 20. Ikezi, H., Nishikawa, K., Hojo, H., Mima, K.: Coupled electron-plasma and ion-acoustic solitons excited by parametric instability. In:...
    • 21. Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)
    • 22. Kawahara, T., Sugimoto, N., Kakutani, T.: Nonlinear self-modulation of capillary-gravity waves on liquid layer. J. Phys. Soc. Jpn. 38(1),...
    • 23. Kellogg, P.J.: Solitary waves in cold collisionless plasma. Phys. Fluids 7, 1555–1571 (1964)
    • 24. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary...
    • 25. Lee, K., Swinney, H.: Lamellar structures and self-replicating spots in a reaction–diffusion system. Phys. Rev. E 51(3), 1899–1915 (1995)
    • 26. Lombardi, E.: Homoclinic orbits to small periodic orbits for a class of reversible systems. Proc. R. Soc. Edinb. A 126(5), 1035–1054 (1996)
    • 27. Lombardi, E.: Homoclinic orbits to exponentially small periodic orbits for a class of reversible systems. Application to water waves....
    • 28. Lombardi, E.: Non-persistence of homoclinic connections for perturbed integrable reversible systems. J. Dyn. Differ. Equ. 11(1), 129–208...
    • 29. Nguyen, N.V., Liu, C.Y.: Some models for the interaction of long and short waves in dispersive media: part I-derivation. Water Waves 2(2),...
    • 30. Nishikawa, K., Hojo, H., Mima, K., Ikezi, H.: Coupled nonlinear electron-plasma and ion-acoustic waves. Phys. Rev. Lett. 33, 148–151 (1974)
    • 31. Rayleigh, L.: On waves. Philos. Mag. 1, 257–279 (1876)
    • 32. Russell, J.S.: Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–390....
    • 33. Shi, Y., Deng, S.: Existence of generalized homoclinic solutions of a coupled KdV-type Boussinesq system under a small perturbation. J....
    • 34. Shi, Y., Han, M.: Existence of generalized homoclinic solutions for a modified Swift–Hohenberg equation. Discrete Contin. Dyn. Syst. Ser....
    • 35. Sun, S.: Existence of a generalized solitary wave solution for water with positive Bond number less than 1/3. J. Math. Anal. Appl. 156(2),...
    • 36. Walter, W.: Gewöhnliche Differential Gleichungen. Springer, New York (1972)
    • 37. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)
    • 38. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. A 15,...
    • 39. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35(5), 908–914 (1972)
    • 40. Zakharov, V.E., Schulman, E.I.: Integrability of nonlinear systems and perturbation theory. In: Zakharov, V.E. (ed.) What is Integrability?...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno