Ir al contenido

Documat


An Optimal Thirty-Second-Order Iterative Method for Solving Nonlinear Equations and a Conjecture

    1. [1] Universidad de La Rioja

      Universidad de La Rioja

      Logroño, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 2, 2022
  • Idioma: inglés
  • DOI: 10.1007/s12346-022-00572-3
  • Enlaces
  • Resumen
    • Many multipoint iterative methods without memory for solving non-linear equations in one variable are found in the literature. In particular, there are methods that provide fourth-order, eighth-order or sixteenth-order convergence using only, respectively, three, four or five function evaluations per iteration step, thus supporting the Kung-Traub conjecture on the optimal order of convergence. This paper shows how to find optimal high order root-finding iterative methods by means of a general scheme based in weight functions. In particular, we explicitly give an optimal thirty-second-order iterative method; as long as we know, an iterative method with that order of convergence has not been described before. Finally, we give a conjecture about optimal order multipoint iterative methods with weights.

  • Referencias bibliográficas
    • 1. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci....
    • 2. Babajee, D.K.R., Thukral, R.: On a 4-point sixteenth-order King family of iterative methods for solving nonlinear equations. Int. J. Math....
    • 3. Basto, M., Abreu, T., Semiao, V., Calheiros, F.L.: Convergence and dynamics of structurally identical root finding methods. Appl. Numer....
    • 4. Behl, R., Amat, S., Magreñán, Á.A., Motsa, S.S.: An efficient optimal family of sixteenth order methods for nonlinear models. J. Comput....
    • 5. Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: A new efficient and optimal sixteenth-order scheme for simple roots of nonlinear...
    • 6. Behl, R., Gutiérrez, J.M., Argyros, I.K., Alshomrani, A.S.: Efficient optimal families of higher-order iterative methods with local convergence....
    • 7. Chun, C., Neta, B.: Comparative study of eighth-order methods for finding simple roots of nonlinear equations. Numer. Algorithms 74(4),...
    • 8. Cordero, A., Lotfi, T., Mahdiani, K., Torregrosa, J.R.: Two optimal general classes of iterative methods with eighth-order. Acta Appl....
    • 9. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)
    • 10. Geum, Y.H., Kim, Y.I.: A biparametric family of four-step sixteenth-order root-finding methods with the optimal efficiency index. Appl....
    • 11. Geum, Y.H., Kim, Y.I.: A biparametric family of optimally convergent sixteenth-order multipoint methods with their fourth-step weighting...
    • 12. Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: On some computational orders of convergence. Appl. Math. Lett. 23(4), 472–478 (2010)
    • 13. Gutiérrez, J.M., Varona, J.L.: Superattracting extraneous fixed points and n-cycles for Chebyshev’s method on cubic polynomials. Qual....
    • 14. Herceg, D., Herceg, D.: Eighth order family of iterative methods for nonlinear equations and their basins of attraction. J. Comput. Appl....
    • 15. Herceg, D., Petkovi´c, I.: Computer visualization and dynamic study of new families of root-solvers. J. Comput. Appl. Math. 401, 16 (2022)
    • 16. Hueso, J.L., Martínez, E., Teruel, C.: Multipoint efficient iterative methods and the dynamics of Ostrowski’s method. Int. J. Comput....
    • 17. Kalantari, B.: Polynomial Root-Finding and Polynomiography. World Scientific, Singapore (2009)
    • 18. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 634–651 (1974)
    • 19. Lotfi, T., Soleymani, F., Sharifi, S., Shateyi, S., Khaksar Haghani, F.: Multipoint iterative methods for finding all the simple zeros...
    • 20. Maroju, P., Behl, R., Motsa, S.S.: Some novel and optimal families of King’s method with eighth and sixteenth-order of convergence. J....
    • 21. Matthies, G., Salimi, M., Sharifi, S., Varona, J.L.: An optimal three-point eighth-order iterative method without memory for solving nonlinear...
    • 22. Neta, B., Scott, M., Chun, C.: Basins of attraction for several methods to find simple roots of nonlinear equations. Appl. Math. Comput....
    • 23. Ostrowski, A.M.: Solution of Equations and Systems of Equations, 2nd edn. Academic Press, New York (1966)
    • 24. Petkovi´c, M.S.: On a general class of multipoint root-finding methods of high computational efficiency. SIAM J. Numer. Anal. 47(6), 4402–4414...
    • 25. Petkovi´c,M.S., Petkovi´c, L.D.: Families of optimal multipoint methods for solving nonlinear equations: a survey. Appl. Anal. Discrete...
    • 26. Sharma, J.R., Argyros, I.K., Kumar, D.: On a general class of optimal order multipoint methods for solving nonlinear equations. J. Math....
    • 27. Sharma, J.R., Arora, H.: Efficient Ostrowski-like methods of optimal eighth and sixteenth order convergence and their dynamics. Afrika...
    • 28. Sharma, J.R., Guha, R.K., Gupta, P.: Improved King’s methods with optimal order of convergence based on rational approximations. Appl....
    • 29. Sharma, J.R., Kumar, S.: Efficient methods of optimal eighth and sixteenth order convergence for solving nonlinear equations. SeMA J....
    • 30. Soleymani, F., Shateyi, S., Salmani, H.: Computing simple roots by an optimal sixteenth-order class. J. Appl. Math. 2012, 13 (2012)
    • 31. Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intelligencer 24(1), 37–46 (2002)
    • 32. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno