Ir al contenido

Documat


Características socioeconómicas, medidas gubernamentales y resultados sanitarios de COVID-19

  • Tomás Gómez Rodríguez [1] ; Arturo Martínez Camacho [1] ; Humberto Ríos Bolívar [2]
    1. [1] Universidad Autónoma del Estado de Hidalgo

      Universidad Autónoma del Estado de Hidalgo

      México

    2. [2] Instituto Politécnico Nacional

      Instituto Politécnico Nacional

      México

  • Localización: Contaduría y administración, ISSN 0186-1042, ISSN-e 2448-8410, Vol. 66, Nº. Extra 5, 2021 (Ejemplar dedicado a: lecciones de la pandemia de Covid-2019)
  • Idioma: español
  • Títulos paralelos:
    • Socioeconomic characteristics, containment measures and health outcomes of COVID-19
  • Enlaces
  • Resumen
    • español

      Se analiza el impacto de las características socioeconómicas pre existentes a la pandemia, así como las medidas tomadas por los distintos gobiernos para reducir los efectos de la pandemia de COVID-19, con el fin de examinar su contribución al número de casos y decesos. Para analizar estas propuestas se emplean dos muestras. Ambas muestras se conforman con datos de 187 países organizados en forma transversal, el método de estimación es Mínimos Cuadrados Ordinarios. Los resultados muestran evidencia de que las variables PIB per cápita y gastos sanitarios (DE) tienen una relación positiva con los casos totales de COVID-19 por millón. Mientras que la variable pobreza extrema muestra evidencia de una relación negativa con respecto al número de casos y decesos totales por millón. Por otro lado, se encuentra evidencia de una relación positiva entre el número de decesos totales por millón (DM) y las variables índice de repuesta gubernamental (IRG) y gastos sanitarios.

    • English

      The impact of pre-pandemic socioeconomic characteristics, as well as the measures taken by different governments to reduce the effects of the COVID-19 pandemic, are analyzed in order to examine their contribution to the number of cases and deaths. Two samples are used to analyze these proposals. Both samples are made up of data from 187 countries organized in a cross-sectional manner, the estimation method is Ordinary Least Squares. The results show evidence that the variables GDP per capita and health expenditure (DE) have a positive relationship with the total cases of COVID-19 per million. While the extreme poverty variable shows evidence of a negative relationship with respect to the number of cases and total deaths per million. On the other hand, there is evidence of a positive relationship between the number of total deaths per million (DM) and the variables government response index (IRG) and health expenditures.

  • Referencias bibliográficas
    • Ashraf, B. N. (2020). Socioeconomic conditions, government interventions and health outcomes during COVID-19. Covid Economics, 37, 141-162.
    • Bengtsson, T., Dribe, M., y Eriksson, B. (2018). Social Class and Excess Mortality in Sweden During the 1918 Influenza Pandemic. American...
    • Biggerstaff, M., Jhung, M. A., Reed, C., Garg, S., Balluz, L., Fry, A. M., y Finelli, L. (2013). Impact of medical and behavioural factors...
    • Bryan, M. S., Sun, J., Jagai, J., Horton, D. E., Montgomery, A., Sargis, R., y Argos, M. (2021). Coronavirus disease 2019 (COVID-19) mortality...
    • Callinan, S., Mojica-Perez, Y., Wright, C. J. C., Livingston, M., Kuntsche, S., Laslett, A., … Kuntsche, E. (2020). Purchasing, consumption,...
    • Charu, V., Chowell, G., Palacio Mejia, L. S., Echevarría-Zuno, S., Borja-Aburto, V. H., Simonsen, L. y Viboud, C. (2011). Mortality Burden...
    • Chaudhry, R., Dranitsaris, G., Mubashir, T., Bartoszko, J., y Riazi, S. (2020). A country level analysis measuring the impact of government...
    • Chen, J. T., y Krieger, N. (2020). Revealing the Unequal Burden of COVID-19 by Income, Race/Ethnicity, and Household Crowding: US County...
    • Gkiouleka, A., Huijts, T., Beckfield, J., y Bambra, C. (2018). Understanding the micro and macro politics of health: Inequalities, intersectionality...
    • Grantz, K. H., Rane, M. S., Salje, H., Glass, G. E., Schachterle, S. E., y Cummings, D. A. T. (2016). Disparities in influenza mortality...
    • Guo, Z., Zhao, S. Z., Guo, N., Wu, Y., Weng, X., Wong, J. Y.-H., … Wang, M. P. (2021). Socioeconomic Disparities in eHealth Literacy and...
    • Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., ... y Tatlow, H. (2021). A global panel database of pandemic...
    • Hale, T., Petherick, A., Phillips, T. y Webster, S. (2020). Variation in government responses to COVID19. Blavatnik school of government working...
    • House, N., Holborn, H., y Wc, L. (2020). ICNARC report on COVID-19 in critical care. ICNARC, 17, 1- 26.
    • Javaheri, B. (2021). The COVID-19 Pandemic: Socioeconomic and Health Disparities. https://doi.org/10.20944/preprints202012.0599.v2
    • Lou, J., Shen, X., y Niemeier, D. (2020). Are stay-at-home orders more difficult to follow for low-income groups? Journal of Transport Geography,...
    • Lowcock, E. C., Rosella, L. C., Foisy, J., McGeer, A., y Crowcroft, N. (2012). The social determinants of health and pandemic H1N1 2009 influenza...
    • Mamelund, S.-E. (2006). A socially neutral disease? Individual social class, household wealth and mortality from Spanish influenza in two...
    • Morens, D. M., y Fauci, A. S. (2020). Emerging Pandemic Diseases: How We Got to COVID-19. Cell, 183(3), 837. https://doi.org/10.1016/j.cell.2020.10.022
    • Murray, C. J., Lopez, A. D., Chin, B., Feehan, D., y Hill, K. H. (2006). Estimation of potential global pandemic influenza mortality on the...
    • Ritchie, H., Ortiz-Ospina, E., Beltekian, D., Mathieu, E., Hasell, J., Macdonald, B., ... y Roser, M. (2020). Coronavirus pandemic (COVID-19)....
    • Rutter, P. D., Mytton, O. T., Mak, M., y Donaldson, L. J. (2012). Socio-economic disparities in mortality due to pandemic influenza in England....
    • Sasaki, S., Sato, A., Tanabe, Y., Matsuoka, S., Adachi, A., Kayano, T., Watanabe, T. (2021). Associations between Socioeconomic Status, Social...
    • Sedgwick, P. (2014). Cross sectional studies: advantages and disadvantages. BMJ, 348(mar26 2), g2276– g2276. https://doi.org/10.1136/bmj.g2276
    • Stojkoski, V., Utkovski, Z., Jolakoski, P., Tevdovski, D., y Kocarev, L. (2020). The Socio-Economic Determinants of the Coronavirus Disease...
    • Wright, A. L., Sonin, K., Driscoll, J., y Wilson, J. (2020). Poverty and economic dislocation reduce compliance with COVID-19 shelter-in-place...
    • Wu, T. (2021). The socioeconomic and environmental drivers of the COVID-19 pandemic: A review. Ambio, 50(4), 822–833. https://doi.org/10.1007/s13280-020-01497-4

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno