Ir al contenido

Documat


Self-similar proles in Analysis of Fluids: a 1D model and the compressible Euler equations

  • Autores: Gonzalo Cao Labora
  • Localización: Reports@SCM: an electronic journal of the Societat Catalana de Matemàtiques, ISSN-e 2385-4227, Vol. 6, Nº. 1, 2021, págs. 35-47
  • Idioma: inglés
  • Enlaces
  • Resumen
    • català

      Presentem dos nous resultats en anàlisi de fluids relacionats amb l’existència de singularitats fent servir perfils autosimilars i anàlisi d’estabilitat al voltant d’ells.

      El primer resultat és una nova prova de la formació de singularitats per l’equació d’Okamoto–Sakajo–Wunsch amb petit paràmetre fent ´us d’un perfil autosimilar aproximat. A la segona part trobem nous perfils autosimilars, radials i suaus, per a l’equació d’Euler compressible i isentròpica. Aquest és el primer perfil d’aquest tipus trobat pel cas de gasos monoatòmics.

    • English

      We present two new results in Analysis of Fluids involving the existence of singularities via self-similar profiles and stability analysis around them. The first result is a new proof of the formation of singularities for the Okamoto-Sakajo-Wunsch equation with small parameter, which is done via a stability analysis around an approximate self-similar profile.The second result consists on the finding of new smooth radial self-similar profiles developing singularities for the isentropic compressible Euler equations. This is the first proof of such profile for the monatomic gas case.

  • Referencias bibliográficas
    • T. Buckmaster, G. Cao-Labora, J. G´omez-Serrano, “Smooth imploding solutions for 3D compressible fluids”, Forthcoming work (2021).
    • T. Buckmaster, S. Shkoller, V. Vicol, “Formation of point shocks for 3D compressible Euler”, Preprint (2019), https://arxiv.org/ abs/1912.04429.
    • T. Buckmaster, S. Shkoller, V. Vicol, “Formation of shocks for 2D isentropic compressible Euler”, Preprint (2019), https://arxiv.org/ abs/1907.03784.
    • A. Castro, D. C´ordoba, “Infinite energy so- ´ lutions of the surface quasi-geostrophic equation”, Adv. Math. 225(4) (2010), 1820–1829.
    • J. Chen, T.Y. Hou, D. Huang, “On the finite time blowup of the De Gregorio model for the 3D Euler equation”, Preprint (2019), https://arxiv.org/abs/1905.06387.
    • C, Collot, T.-E. Ghoul, S. Ibrahim, N. Masmoudi, “On singularity formation for the two dimensional unsteady Prandtl’s system”, Preprint (2018),...
    • C. Collot, T.-E. Ghoul, N. Masmoudi, “Singularity formation for Burgers equation with transverse viscosity”, Preprint (2018), https: //arxiv.org/abs/1803.07826.
    • P. Constantin, P.D. Lax, A. Majda, “A simple one-dimensional model for the threedimensional vorticity equation”, Commun. Pure Appl. Math....
    • A. C´ordoba, D. C´ordoba, M.A. Fontelos, “Formation of singularities for a transport equation with nonlocal velocity”, Ann. of Math. 162 (2005),...
    • A.-L. Dalibard, N. Masmoudi, “Separation for the stationary Prandtl equation”, Publ. Math. Inst. Hautes Etudes Sci. ´ 130(1) (2019), 187– 297.
    • S. De Gregorio, “On a one-dimensional model for the three-dimensional vorticity equation”, J. Stat. Phys. 59(5-6) (1990), 1251–1263.
    • T.M. Elgindi, T.-E. Ghoul, N. Masmoudi, “Stable self-similar blowup for a family of nonlocal transport equations”, Preprint (2019), https: //arxiv.org/abs/1906.05811.
    • T.M. Elgindi, I.-J. Jeong, “On the effects of advection and vortex stretching”, Arch. Ration. Mech. Anal. 235(3) (2020), 1763–1817.
    • C.L. Fefferman, “Existence and smoothness of the Navier–Stokes equation”, The millennium prize problems 57 (2006), 67.
    • J. G´omez-Serrano, “Computer-assisted proofs in PDE: a survey”, SeMA J. 76(3) (2019), 459– 484.
    • K.G. Guderley, “Starke kugelige und zylinrische verdichtungsstosse in der nahe des kugelmitterpunktes bzw. Der zylinderachse”, Luftfahrtforschung...
    • [17] Y. Guo, M. Hadzic, J. Jang, M. Schrecker, “Gravitational collapse for polytropic gaseous stars: self-similar solutions”, Preprint (2021), https://arxiv.org/abs/2107.12056.
    • [18] T. Kato, C.Y. Lai, “Nonlinear evolution equations and the Euler flow”, J. Funct. Anal. 56(1) (1984), 15–28.
    • J. Luk, J. Speck, “Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity”, Invent. Math. 214(1)...
    • F. Merle, P. Rapha¨el, I. Rodnianski, J. Szeftel, “On smooth self similar solutions to the compressible Euler equations”, Preprint (2019), https://arxiv.org/abs/1912.10998.
    • F. Merle, P. Rapha¨el, I. Rodnianski, J. Szeftel, “On the implosion of a three dimensional compressible fluid”, Preprint (2019), https: //arxiv.org/abs/1912.11009.
    • F. Merle, P. Rapha¨el, I. Rodnianski, J. Szeftel, “On blow up for the energy super critical defocusing nonlinear Schr¨odinger equations”,...
    • H. Okamoto, T. Sakajo, M. Wunsch, “On a generalization of the Constantin–Lax–Majda equation”, Nonlinearity 21(10) (2008), 2447.
    • B. Riemann, Uber die Fortpflanzung ebener ¨ Luftwellen von endlicher Schwingungsweite, Verlag der Dieterichschen Buchhandlung, 1860.
    • T. Tao, “Lecture notes 4 for 247A”, https: //www.math.ucla.edu/~tao/247a.1.06f/.
    • E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, 1948.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno