Ir al contenido

Documat


Traveling Wave Solutions of a Generalized Burgers-αβ Equation

  • Zhu, Wenjing [1] ; Xia, Yonghui [2]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] China Jiliang University

      China Jiliang University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 1, 2022
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00558-7
  • Enlaces
  • Resumen
    • In this paper, we investigate the bifurcations and exact traveling wave solutions of a generalized Burgers-αβ equation. Employing the bifurcation theory of planar dynamical system, we obtain the phase portraits of the corresponding traveling wave system. The existence of the singular straight line ϕ=c leads to the dynamical behavior of solutions with two scales. Corresponding to some special level curves, we give the exact explicit parametric representations of smooth and non-smooth solutions under different parameter conditions, including solitary wave solutions and peakon solutions.

  • Referencias bibliográficas
    • 1. Byrd, P.F., Fridman, M.D.: Handbook of elliptic integrals for engineers and sciensists. Springer, Berlin (1971)
    • 2. Chen, A., Tian, C., Huang, W.: Periodic solutions with equal period for the Friedmann-RobertsonWalker model. Appl. Math. Lett. 77(01),...
    • 3. Chen, L., Guan, C.: Global solutions for the generalized Camassa-Holm equation. Nonlin. Anal. Real World Appl. 58, 103227 (2021)
    • 4. Chen, R.M.,Walsh, S.,Wheeler,M.H.: Center manifolds without a phase space for quasilinear problems in elasticity, biology, and hydrodynamics....
    • 5. Chu, J., Meng, G., Zhang, Z.: Continuous dependence and estimates of eigenvalues for periodic generalized Camassa-Holm equations. J. Differ....
    • 6. Chu, J., Wang, L.: Analyticity of rotational travelling gravity two layer waves. Stud. Appl. Math. 146(3), 605–634 (2021)
    • 7. Constantin, A., Lannes, D.: The Hydrodynamical Relevance of the Camassa-Holm and DegasperisProcesi Equations. Arch. Ration. Mech. Anal....
    • 8. Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. R Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457, 953–970 (2008)
    • 9. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach. J. Funct. Anal....
    • 10. Ge, J., Du, Z.: The solitary wave solutions of the nonlinear perturbed shallow water wave model. Appl. Math. Lett. 103, 106202 (2020)
    • 11. Groves, M.D., Wahlén, E.: Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity....
    • 12. Gui, G., Liu, Y., Luo, T.: Model equations and traveling wave solutions for shallow-water waves with the coriolis effect. J. Nonlin. Sci....
    • 13. Gui, G., Liu, Y., Sun, J.: A nonlocal shallow-water model arising from the full water waves with the coriolis effect. J. Math. Fluid Mech....
    • 14. Holm, D.D., Staley, M.F.: Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a...
    • 15. Kirchgässner, K.: Nonlinearly resonant surface waves and homoclinic bifurcation. Adv. Appl. Mech. 26, 135–181 (1988)
    • 16. Lenells, J.: Traveling wave solutions of the Camassa-Holm equation. J. Differ. Equ. 217, 393–430 (2005)
    • 17. Lenells, J.: Traveling wave solutions of the Degasperis-Procesi equation. J. Math. Anal. Appl. 306, 72–82 (2005)
    • 18. Lenells, J.: Classification of traveling waves for a class of nonlinear wave equations. J. Dyn. Differ. Equ. 18, 381–391 (2005)
    • 19. Lenells, J.: Classification of all travelling-wave solutions for some nonlinear dispersive equations. Phil. Trans. R. Soc. A 365, 2291–2298...
    • 20. Li, J.: Singular nonlinear traveling wave equations: bifurcation and exact solutions, Science, Beijing (2013)
    • 21. Li, J., Chen, G.: On a class of singular nonlinear traveling wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17, 4049–4065...
    • 22. Liu, H., Yue, C.: Lie symmetries, integrable properties and exact solutions to the variable-coefficient nonlinear evolution equations....
    • 23. Ji, S., Zhou, Y.: Wave breaking and global solutions of the weakly dissipative periodic Camassa-Holm type equation. J. Differ. Equ. 306,...
    • 24. Moon, B.: Traveling wave solutions to the Burgers-αβ equation. Adv. Nonlin. Stud. 16, 147–157 (2016)
    • 25. da Silva, P., Freire, I.L.: Well-posedness, traveling waves and geometrical aspects of some generalizations of the Camassa-Holm equation....
    • 26. Song, Y., Tang, X.: Stability, steady-state bifurcations, and turing patterns in a predator-prey model with herd behavior and prey-taxis....
    • 27. Sun, X., Yu, P.: Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete Contin....
    • 28. Sun, X., Huang, W., Cai, J.: Coexistence of the solitary and periodic waves in convecting shallow water fluid. Nonlin. Anal. Real World...
    • 29. Tang, S., Huang, W.: Bifurcations of travelling wave solutions for the generalized double Sinh-Gordon equation. Appl. Math. Comput. 189,...
    • 30. Wang, L.: Small-amplitude solitary and generalized solitary traveling waves in a gravity two-layer fluid with vorticity. Nonlin. Anal....
    • 31. Zhang, B., Zhu, W., Xia, Y., Bai, Y.: A unified analysis of exact traveling wave solutions for the fractional-order and integer-order...
    • 32. Zhu, W., Li, J.: Exact traveling wave solutions and bifurcations of the Burgers-αβ equation. Internat. J. Bifur. Chaos 26(10), 1650175...
    • 33. Zhu, K., Shen, J.: Smooth travelling wave solutions in a generalized Degasperis-Procesi equation. Commun. Nonl. Sci. Numer. Simulat. 98,...
    • 34. Zhu, W., Xia, Y., Zhang, B., Bai, Y.: Exact traveling wave solutions and bifurcations of the time fractional differential equations with...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno