Ir al contenido

Documat


Lie group symmetries' complete classification for a generalized Chazy equation and its equivalence group

  • Acevedo, Yeisson A. [1] ; Londoño Duque, Óscar M. [2] ; Loaiza, Gabriel I. [1]
    1. [1] EAFIT, Departamento de Ciencias Matemáticas, Medellín, Colombia
    2. [2] IMECC-UNICAMP, Instituto de Matemáticas, Campinas, Brasil
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 29, Nº. 1, 2022 (Ejemplar dedicado a: Revista de Matemática: Teoría y Aplicaciones), págs. 1-17
  • Idioma: inglés
  • DOI: 10.15517/rmta.v29i1.43782
  • Títulos paralelos:
    • Clasificación completa del grupo de simetrías de Lie para una ecuación de Chazy generalizada y su grupo de equivalencia
  • Enlaces
  • Resumen
    • español

      En este trabajo se obtiene una clasificación completa del grupo de simetrías de Lie para una generalización de la ecuación de Chazy, se calcula el grupo de equivalencia y se utiliza éste para presentar el álgebra principal de la ecuación.

    • English

      In this work, a complete classification of the Lie group symmetries for a generalization of Chazy equation was carried out and the equivalence group for the generalized Chazy equation is calculated and used to present the principal algebra of the equation.

  • Referencias bibliográficas
    • A.A. Adam, F. M. Mahomed, Integration of Ordinary Differential Equations via Nonlocal Symmetries, Nonlinear Dynamics, Springer, Cham 30(2002),...
    • D.J. Arrigo, Symmetry Analysis of Differential Equations,Wiley (2014). Url: https://n9.cl/plyqs
    • T. Aziz, A. Fatima, C.M. Khalique, F.M. Mahomed, Prandtl’s boundary layer equation for two-dimensional flow: Exact solutions via the simplest...
    • W.G. Bickley, LXXIII. The plane jet, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23(1937), no. 156, 727–731....
    • G. Bluman, S. Anco, Symmetry and Integration Methods for Differential Equations, Springer, New York, (2002). Doi: 10.1007/b97380
    • G. Bluman, S. Anco, Symmetry and Integration Methods for Differential Equations, Springer, New York (2008). Doi: 10.1007/b97380
    • G.W. Bluman, A.F. Cheviakov, S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, New York (2010). Doi:...
    • J.P. Boyd, The Blasius function: Computations before computers, the value of tricks, undergraduate projects, and open research problems, SIAM,...
    • K.P. Burr, T.R. Akylas, C.C. Mei, Chapter Two – Dimensional Laminar Boundary Layers, SIAM, Society for Industrial and Applied Mathematics,...
    • J. Chazy, Sur les équations différentielles dont l’integrale générale est uniforme et admet des singularités essentielles mobiles, C. R. Acad....
    • J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes,...
    • P.A. Clarkson, P.J. Olver, Symmetry and the Chazy equation, Journal of Differential Equations, 124(1996), no. 1, 225–246. Doi: 10.1006/jdeq.1996.0008
    • M.B. Glauert, The wall jet, Journal of Fluid Mechanics, Cambridge University 1(1956), no. 6, 625. Doi: 10.1017/S002211205600041X
    • P.E. Hydon, Applications of Lie Groups to Differential Equations A Beginner’s Guide, Cambridge University Press (2000). Doi: 10.1017/CBO9780511623967
    • N.H. Ibragimov, M. Torrisi, A. Valenti, Preliminary group classification of equations vtt=f (x, vx)vxx + g(x; vx), Journal of Mathematical...
    • N.H. Ibragimov, M. Torrisi, A simple method for group analysis and its application to a model of detonation, Journal of Mathematical Physics,...
    • N.H. Ibragimov, M.C. Nucci, Integration of third order ordinary differential equations by Lie’s method: Equations admitting three-dimensional...
    • N.H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton FL (1995), Vol. 3. Url: https://n9.cl/jamtq
    • N.H. Ibragimov, N. Säfström, The equivalence group and invariant solutions of a tumour growth model, Communications in Nonlinear Science and...
    • G. Loaiza, Y. Acevedo, O.M.L. Duque, Álgebra óptima y soluciones invariantes para la ecuación de Chazy, Ingeniería y Ciencia, Eafit University,...
    • G. Loaiza, Y. Acevedo, O.M.L. Duque, D.A. García Hernández, Lie algebra classification, conservation laws, and invariant solutions for a generalization...
    • G. Loaiza, Y. Acevedo, O.M.L. Duque, D.A. García Hernández, Sistema óptimo, soluciones invariantes y clasificación completa del grupo de simetrías...
    • R. Naz, F M. Mahomed, D.P. Mason, Symmetry solutions of a thirdorder ordinary differential equation which arises from Prandtl boundary layer...
    • P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1986). Doi: 10.1007/978-1-4684-0274-2
    • L.V. Ovsiannikov, Group Analysis of Differential Equations, Nauka, Moscow, 1978. English transl., Academic Press, New York (1982).Url: https://www.elsevier.com/books/group-analysis-of-differentialequations/ovsiannikov/978-0-12-531680-4
    • N. Riley, Asymptotic expansions in radial jets, Journal of Mathematics and Physics, Wiley 41(1962), no. 1-4, 132–146. Doi: 10.1002/sapm1962411132
    • H. Schlichting, Laminare Strahlausbreitung, ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, Wiley, 13(1933), no. 2, 260–263. Doi:...
    • H.B. Squire, Radial Jets, Springer, Book: 50 Jahre Grenzschichtforschung (1955), 47–54. Doi: 10.1007/978-3-663-20219-6_5

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno